
International Journal on Advances in Engineering Technology and Science

Volume: 4, Issue: 1, 2023, e-ISSN: 2455-3131

© 2016-2023, IJAETS 1

Forward Pass RNN and Hyperbolic Mapping used in

Software Bug Prediction

Pooja Singh1, Rupali Chaure2, Ritu Shrivastava3

1Research Scholar, 2Assistant Professor, 3Head and Professor

Department of CSE, SIRT, Bhopal, India

Abstract— In academics and industry, software bug

prediction (SBP) is essential for assessing worker

dependability. Early fault discovery enhances software

adaption, efficacy, user happiness, and resource

efficiency. Early in the software development lifecycle, a

variety of measurements and techniques are used. The

goal is to enhance the accuracy, recall, and precision of

software problem detection in retrieving relevant flaws.

By merging FPRNN with Hyperbolic Mapping, the

FPRNN-HM approach improves software defect

prediction by speeding up convergence and enhancing

searching power, ultimately identifying ideal attributes.

The FPRNN-HM model achieves high accuracy of

98.45% for big datasets, prevents overfitting, and offers

high computation, making it an affordable tool for

software development bug prediction.

Keywords— SBP, FPRNN-HM, Accuracy, Precision.

I. INTRODUCTİON

The impact of software programmes is growing every day.

The evaluation of reliability in labour is becoming more and

more significant in both industry and academics. Improving

software quality with limited testing resources as software

testing duration and total cost continue to rise is an essential

test for any researcher or software professional. Sorting

software modules into problematic and non-faulty

categories is the main objective of software bug prediction

(SBP) approaches. To enhance software quality, the

engineer will thereafter propose options for testing different

software modules and practical test resources [1].

The frequency of software defects significantly affects the

programme's performance, reliability, and cost of operation.

Even with proper usage, it takes a lot of work to produce

software free of bugs since hidden flaws are often present

[2].

Developing a model for software bug prediction that can

detect malfunctioning modules early on is a significant

challenge in software engineering [3]. One essential phase

in the software development process is the prediction of

defects [4]. This is because detecting troublesome modules

prior to programme deployment improves user satisfaction

and overall software effectiveness [5]. Furthermore, early

software issue prediction improves resource efficiency and

software adaptation to different environments. Several

software metrics, including class level, method level, fle

level, and process level, are used in the early stages of the

software development life cycle to find software flaws

without actually testing the programme [6, 7]. Numerous

methods, such as statistical analysis, machine learning,

expert systems, etc., may be used to find software flaws.

In the present study, we propose the FPRNN-HM (Forward

Pass RNN with Hyperbolic Mapping) method to improve

software fault prediction. Selecting the most effective

characteristics that might reveal the underlying structures of

the defect data is crucial for developing effective defect

prediction models. The main contribution of the proposed

model is listed below:

• The FPRNN (Forward Pass RNN) with method and

HM (Hyperbolic Mapping) are utilised to find software

flaws.

• The suggested FPRNN (Forward Pass RNN) combines

HM (Hyperbolic Mapping). The purpose of this

technique is to accelerate convergence and improve

searching capability.

• The recommended approach makes use of the HM

(Hyperbolic Mapping) to choose the best

characteristics.

• To find the software problem, HM (Hyperbolic

Mapping) is suggested here.

In particular, SBP is covered in great detail in this work and

is divided into the following subsections: In Section 2, the

history of SBP is shown. The issue identification of

prediction analysis is shown in Section 3. Section 4 explains

the study aims, and Section 5 provides an overview of the

SBP approach using data from specific dataset. Results and

current developments in prediction analysis are shown in

Section 6.

II. BACKGROUND

Several academics used artificial intelligence approaches to

uncover software bugs. A selection of these works are

mentioned below; More than 4000 defect reports were

collected from three open-source database systems and

Pooja Singh et al, Forward Pass RNN and Hyperbolic Mapping used in Software Bug Prediction

2 https://ijaets.in

mechanically classified using the Orthogonal Defect

Classification (ODC) method, according to Lopes et al.'s

analysis [8]. Undersampling was used to get around uneven

datasets. The findings of the experiment show that

categorising certain ODC properties automatically using

only reports is difficult. Similar to this, semi-supervised

learning-based automatic ODC defect-type classification

was carried out by Thung et al. [9]. In this instance, 500

problem reports gathered from three software systems were

classified. The utilisation of huge datasets will have an

impact on classification accuracy. Three factors were used

by Tan et al. [10] to construct a bug classification system:

impact, dimensions root cause, and affected component.

The machine learning methods were used for the

classification procedure. By using machine learning

methods, 109,014 bugs are automatically found. A

machine-learning approach was presented by Li et al. [11]

to examine bug characteristics in open-source software.

They proposed the classification of a problem based on

concurrent memory and semantic flaws, much as Tan et al.

The programming studies and cypher excellence of open-

source projects were examined by Ray et al. in [12]. They

introduced machine learning classifiers to accomplish this

goal. By using abstract syntax trees (ASTs) and tree-based

coding, Ni et al. [13] predicted root cause categories

(TBCNN). There are 21 subcategories and six primary types

of origin reasons.

Goseva et al. [14] used supervised and unsupervised

learning methods to analyse mistakes based on security and

non-security. High-impact mistakes were predicted by Wu

et al. [15] using machine learning approaches for active

learning. A machine learning approach and Fecher selection

method for predicting Mandelbucks and Borbucks were

described by Xia et al. [16]. Subsequently, a system for

cross-project domain adaptation with the same purpose was

created by Du et al. [17]. Additionally, [18] provides a

straightforward explanation of error detection and a positive

impression of articles on error classification and

prioritisation.

A machine learning (ML) algorithm-based technique for

software bug prediction was reported by Hammouri et al.

[19] in 2018. Using three closely watched machine learning

approaches, potential software problems were predicted

based on past data. The assessment method demonstrated

the proper and effective application of ML algorithms.

Empirical results showed that the ML methodology is more

effective for the estimate procedure than other strategies

like linear AR and POWM models. In order to create,

develop, and evaluate bug forecasting models in real-world

continuous software evolution situations, Wang et al. [20]

examined software bug prediction. ConBuild uses the

diferential qualities of bug prediction data to rethink how

training data is selected for models. ConEA uses fle-bug

probability growth to redefine effort-aware evaluation in

continuous software development. The utility of techniques

is shown by analyses of 120 regularly published versions of

six large-scale open-source software systems.

Artificial Immune Networks (AIN) and machine learning

classifiers based on software bug detection were examined

by Khan et al. [21]. The hyperparameters were chosen best

to boost the bug prediction process's dependability. A

paradigm for an object-oriented software bug prediction

system (SBPS) was examined by Gupta and Saxena [22]. A

few open-source projects with similar issue datasets were

obtained for this study via the Promise Software

Engineering Repository. The Logistic Regression Classifer

has the highest accuracy of all the classifiers.

Software bug fault identification methods that use the

collective sorting approach were examined by Moustafa et

al. in [23]. The techniques were tested on datasets of

different sizes and used to apply different software

measurement groups as sorting algorithm characteristics.

The results showed that update measurements outperformed

both an approach that combines equal amounts of data and

static code measures. Qu and Yin [24] assessed network

embedding approaches in bug identification and used

node2defect, a flaw detection framework that concatenates

integrated vectors using traditional software engineering

metrics, to create and improve on it. The trials employed 13

open-source Java systems, two effort-aware models, and

seven connection embedding approaches.

A new review [25] provides a thorough explanation of the

use of deep learning methods in software development

research, including the forecasting of flaws and

vulnerabilities and the localization of errors. Huang et al.

[26] manually classified approximately 5,400 phrases from

published papers into seven categories, including

"Information Delivery" and "Problem Discovery." They

later created a deep neural network to predict these goals.

Localising software bugs was created by Mahajan and

Chaudhary [27]. A hybrid optimization-based CNN was

created to accomplish this goal. For feature selection, they

presented a hybridised cuckoo search-based sea lion

optimisation method. When compared to other approaches,

the procedure produced excellent results. Deep

reinforcement learning technique-based bug identification

in video games was first shown by Rani et al. [28]. A graph

CNN-based software version-to-version bug prediction

system was created by Wang et al. [29]. The analysis of

deep learning algorithms based on bug prediction was done

by Choetkiertikul et al. [30]. Software bug detection based

on feature transformation was developed by Cynthia et al.

[31]. In this case, feature selection-based prediction was the

primary emphasis. Furthermore, a deep learning algorithm-

based bug prediction was created by Giray et al. [32]. Here,

they examined the performance of several machine learning

and deep learning methods.

Many researchers focused on deep learning approaches and

prediction based on machine learning algorithms while

examining the literature review. The majority of the

researchers in this processed all the information without

concentrating on the best aspects. Both the complexity and

time required for computing will grow as a result. This

research proposes feature selection-based software bug

prediction as a workaround for the problems.

International Journal on Advances in Engineering Technology and Science

Volume: 4, Issue: 1, 2023, e-ISSN: 2455-3131

© 2016-2023, IJAETS 3

III. PROBLEM IDENTİFİCATİON

The problems identified by previous research are as follows

[1, 4]:

• It is not always possible to identify relevant software

flaws.

• A software bug's recovery is not entirely recognized.

• The poor accuracy of the unnamed software issue may

lead to its detection.

IV. RESEARCH OBJECTİVES

The aims of the suggested work are as follows:

• To increase accuracy in order to perfectly retrieve

pertinent software flaws.

• To increase recall for software faults that are absolutely

relevant throughout the retrieval process.

• To increase the precision of software problem

detection.

V. METHODOLOGY

The algorithm of proposed model is as follows:

I = Number of input layers

H = Number of hidden layers

O = Number of output layers

S = Number of data set instances

Step 1: for i = 1 to H

Step 2: for j = 1 to S

calculating the forward for the forward hidden layers with

activation function

()1tanhf f f f f

t h t x t hh W h W x b−= + +
 (1)

end for

Step 3: for j=S to 1

calculating the backward pass for the backward hidden

layer’s activation function

()1tanhb b b b b

t h t x t hh W h W x b−= + +
 (2)

end for

end for

Step 4: for i =1 to O

calculating the forward pass for the output layer using the

previous stored activation function

 () ()f f b b

t i y t y t yi t
P y x W h W h b


= + +

 (3)

Wy is the weight matrix connecting the hidden layer to

output layer, Wh is the weight matrix that connects hidden

to hidden layer, and Wx is the weight matrix that connects

input layer to hidden layer. by is the output layer bias

vectors, and bh is the hidden layer bias vectors. For the final

nonlinearity r, and use tanh as an activation function for

classification. According to this form, the RNN will

evaluate the output yt according to the information

propagated through the hidden layer regardless of whether

it depends directly or indirectly on the values

   1 21
, ,....,

t

i ti
x x x x

=
=

 (4)

VI. EXPERİMENT AND RESULT

This section outlines the precise procedures of the

experiment after outlining various presumptions and

constraints. The following are the presumptions made in

this work:

(1) The training and testing data come from a single dataset,

and our main emphasis is on software defect prediction

inside a project. When using the ant dataset for

experimentation, for instance, the training set is chosen and

the test set is created from the remaining portion of the

dataset.

(2) The trained model favours the non-faulty classes during

the trials because of a limited number of defective classes.

Thus, before training the model, class imbalance is applied

to the whole dataset.

(3) A tenfold cross-validation is used in order to more

accurately measure the algorithm's performance.

The software defect prediction system presented in this

study can be validated under the aforementioned

assumptions. The particular protocol for the experiment is

as follows:

Step 1: The software's class dependency is extracted using

the code analysis tool, and a CSV file is subsequently

created.

Step 2: The PROMISE dataset is used to extract the labelled

nodes and feature metrics for each node.

Step 3: To address data class imbalance, the FPRNN-HM

technique is used.

Pooja Singh et al, Forward Pass RNN and Hyperbolic Mapping used in Software Bug Prediction

4 https://ijaets.in

The following observations are made using Python 3.11.1

and the Jupyter Lab toolbox on Anaconda Navigator. The

following formulas are used to determine the precision,

recall, F1-Score, and accuracy parameters of the suggested

FPRNN-HM process using the (PROMISE Dataset)

JS1.csv:

Figure 1. Evaluation of Bug Frequency in Software for FPRNN-HM (Proposed Prediction Model)

Table 1. Estimation of Confusion Matrix among different

models and FPRNN-HM (Proposed Prediction Model)

Models Prediction Module has bugs

No Yes

Random

Forest

Classifier predicts

no bugs

1652 80

Classifier predicts

some bugs

341 103

Naïve Bayes Classifier predicts

no bugs

1663 69

Classifier predicts

some bugs

364 80

Logistic

Regression

Classifier predicts

no bugs

1701 31

Classifier predicts

some bugs

415 29

Decision Tree Classifier predicts

no bugs

1453 279

Classifier predicts

some bugs

268 176

ANN Classifier predicts

no bugs

1738 36

Classifier predicts

some bugs

339 63

FPRNN-HM

(Proposed)

Classifier predicts

no bugs

1841 13

Classifier predicts

some bugs

19 304

Table 2. Estimation of Precision, Recall, F1-Score and

Accuracy among different models an FPRNN-HM

(Proposed Prediction Model)

Models Precision Recall F1-

Score

Accuracy

Random

Forest

0.95 0.83 0.9 80.65 %

Naïve Bayes 0.96 0.82 0.88 80.10 %

Logistic

Regression

0.98 0.8 0.88 79.5 %

Decision

Tree

0.83 0.84 0.83 74.86 %

ANN 0.97 0.84 0.9 82.77 %

FPRNN-HM

(Proposed)

0.99 0.98 0.99 98.45 %

International Journal on Advances in Engineering Technology and Science

Volume: 4, Issue: 1, 2023, e-ISSN: 2455-3131

© 2016-2023, IJAETS 5

Figure 2. Graphical Analysis of Precision among different

models and FPRNN-HM (Proposed Prediction Model)

The above graph show that the proposed model gives better

precision for bug prediction as compare than other models.

The precision of FPRNN-HM is improved by 0.01 as

compare than Logistic Regression prediction model.

Figure 3. Graphical Analysis of Recall among different models

and FPRNN-HM (Proposed Prediction Model)

The above graph show that the proposed model gives better

recall for bug prediction as compare than other models. The

recall of FPRNN-HM is improve by 0.14 as compare than

Decision Tree and ANN prediction model.

Figure 4. Graphical Analysis of F1-Score among different

models and FPRNN-HM (Proposed Prediction Model)

The above graph show that the proposed model gives better

F1-Score for bug prediction as compare than other models.

The F1-Score of FPRNN-HM is improve by 0.09 as

compare than Random Forest and ANN prediction model.

Figure 5. Graphical Analysis of Accuracy among different

models and FPRNN-HM (Proposed Prediction Model)

The above graph show that the proposed model gives better

Accuracy for bug prediction as compare than other models.

The Accuracy of FPRNN-HM is improved by 15.68 % as

compare than ANN prediction model.

VII. CONCLUSİONS

Since bug prediction reduces production costs, maintenance

costs, and dependability, it is essential in the early stages of

software development. To create a successful programme,

we have used the FPRNN-HM model in our suggested

work. Our findings demonstrates that feature selection and

cross-validation were not given enough priority in previous

research. When compared to other methods, the suggested

technique produces high accuracy of 98.45% for huge

datasets, indicating that it is the best. The optimal

combination of the five created algorithms is simple to use,

predicts more accurately, prevents overfitting, offers high

computation, can be used to both regression and

classification tasks, and performs well with huge datasets.

Even now, research is being done to understand more about

this approach to bug prediction in conjunction with a

machine learning model.

The following are the work's conclusions:

1. The suggested model outperforms ANN in terms of

prediction accuracy. There is a 15.68% increase in

accuracy.

2. The suggested model outperforms logistic regression in

terms of prediction accuracy. There is a 1% increase in

accuracy.

3. The suggested model outperforms Decision Trees and

ANNs in terms of prediction recall. Recall gains 14% better.

0.75

0.8

0.85

0.9

0.95

1

0.75

0.8

0.85

0.9

0.95

1

0.75

0.8

0.85

0.9

0.95

1

40.00%

60.00%

80.00%

100.00%

Pooja Singh et al, Forward Pass RNN and Hyperbolic Mapping used in Software Bug Prediction

6 https://ijaets.in

4. The suggested model outperforms ANN and Random

Forest in terms of prediction F1-Score. By 9%, the F1-Score

becomes better.

Our suggested technique is very beneficial for future

development and helps to increase the accuracy of bug

prediction. In order to verify the accuracy estimate in future

improvements, the accuracy must be validated using other

datasets and other AI algorithms. Because so much data was

collected to estimate the performance of the train data, the

processing time of the suggested model is limited. The same

methods will be used in the future to estimate the system's

efficacy using real-time data.

REFERENCES

[1] R. Siva, Kaliraj S, B. Hariharan, N. Premkumar (2023). Automatic

Software Bug Prediction Using Adaptive Artifcial Jelly

Optimization with Long Short-Term Memory. Wireless Personal

Communications (pp. 1975-1998). Springer.

[2] Abozeed, S.M., ElNainay, M.Y., Fouad, S.A. & Abougabal, M.S.

(2020). Software bug prediction employing feature selection and

deep learning. In 2019 International Conference on Advances in the

Emerging Computing Technologies (AECT) (pp. 1–6). IEEE.

[3] Panda, M. & Azar, A.T. (2021). Hybrid multi-objective grey wolf

search optimizer and machine learning approach for software bug

prediction. In Handbook of research on modeling, analysis, and

control of complex systems (pp. 314–337). IGI Global.

[4] Kumar, R., & Gupta, D. L. (2016). Software bug prediction system

using neural network. European Journal of Advances in

Engineering and Technology, 3(7), 78–84.

[5] Chaubey, P.K., & Arora, T.K. (2020). Software bug prediction and

classifcation by global pooling of diferent activation of convolution

layers. Materials Today: Proceedings.

[6] Ferenc, R., Gyimesi, P., Gyimesi, G., Tóth, Z., & Gyimóthy, T.

(2020). An automatically created novel bug dataset and its

validation in bug prediction. Journal of Systems and Software, 169,

110691.

[7] Aggarwal, A., Dhindsa, K.S., & Suri, P.K. (2021). Enhancing

software quality assurance by using knowledge discovery and bug

prediction techniques. In Soft computing for intelligent

systems (pp. 97–118). Springer, Singapore.

[8] Thung, F., Le, X.B.D., Lo, D. (2015). Active semi-supervised

defect categorization. In: 23rd Int. conference on program

comprehension, pp 60–70.

[9] Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., & Zhai, C. (2014). Bug

characteristics in open source software. Empirical Software

Engineering, 19(6), 1665–1705.

[10] Zhang, N., Ying, S., Ding, W., Zhu, K., & Zhu, D. (2021).

WGNCS: A robust hybrid cross-version defect model via multi-

objective optimization and deep enhanced feature representation.

Information Sciences, 570, 545–576.

[11] Ray, B., Posnett, D. Filkov, V., Devanbu, P. (2014). A large scale

study of programming languages and code quality in GitHub. In:

ACM SIGSOFT symposium on the foundations of software

engineering, pp 155–65

[12] Ni, Z., Li, B., Sun, X., Chen, T., Tang, B., & Shi, X. (2020).

Analyzing bug fx for automatic bug cause classifcation. Journal of

Systems and Software, 163, 110538.

[13] Goseva-Popstojanova, K., Tyo, J. (2018). Identifcation of security

related bug reports via text mining using supervised and

unsupervised classifcation. In: Int. conf. on software quality,

reliability and security, pp. 344–355.

[14] Wu, X., Zheng, W., Chen, X., Zhao, Y., Yu, T., & Mu, D. (2021).

Improving high-impact bug report prediction with combination of

interactive machine learning and active learning. Information and

Software Technology, 133, 106530.

[15] Xia, X., Lo, D., Wang, X., Zhou, B. (2014). Automatic defect

categorization based on fault triggering conditions. In: Int.

conference on engineering of complex computer systems, pp. 39–

48.

[16] Du, X., Zhou, Z., Yin, B., & Xiao, G. (2020). Cross-project bug

type prediction based on transfer learning. Software Quality

Journal, 28(1), 39–57.

[17] Ahmed, H. A., Bawany, N. Z., & Shamsi, J. A. (2021). Capbug-A

framework for automatic bug categorization and prioritization

using NLP and machine learning algorithms. IEEE Access, 9,

50496–50512.

[18] Hammouri, A., Hammad, M., Alnabhan, M., & Alsarayrah, F.

(2018). Software bug prediction using machine learning

approach. International Journal of Advanced Computer Science

and Applications, 9(2), 78–83.

[19] Wang, S., Wang, J., Nam, J. & Nagappan, N. (2021). Continuous

software bug prediction. In Proceedings of the 15th ACM/IEEE

International Symposium on Empirical Software Engineering and

Measurement (ESEM) (pp. 1–12).

[20] Khan, F., Kanwal, S., Alamri, S., & Mumtaz, B. (2020). Hyper-

parameter optimization of classifers, using an artifcial immune

network and its application to software bug prediction. IEEE

Access, 8, 20954–20964.

[21] Gupta, D. L., & Saxena, K. (2017). Software bug prediction using

object-oriented metrics. Sādhanā, 42(5), 655–669.

[22] Moustafa, S., ElNainay, M. Y., El Makky, N., & Abougabal, M. S.

(2018). Software bug prediction using weighted majority voting

techniques. Alexandria engineering journal, 57(4), 2763–2774.

[23] Qu, Y., & Yin, H. (2021). Evaluating network embedding

techniques’ performances in software bug prediction. Empirical

Software Engineering, 26(4), 1–44.

[24] Yang, Y., Xia, X., Lo, D., Grundy, J. (2022). A survey on deep

learning for software engineering. ACM Computing Surveys

(CSUR), 54(10), 1–73.

[25] Huang, Q., Xia, X., Lo, D., & Murphy, G. C. (2020). Automating

intention mining. IEEE Transactions on Software Engineering,

46(10), 1098–1119.

[26] Mahajan, G., & Chaudhary, N. (2022). Design and development of

novel hybrid optimization-based convolutional neural network for

software bug localization. Soft Computing, 26(24), 13651–13672.

[27] Rani, G., Pandey, U., Wagde, A. A., & Dhaka, V. S. (2022). A deep

reinforcement learning technique for bug detection in video games.

International Journal of Information Technology, 15(1), 355–367.

[28] Wang, Z., Tong, W., Li, P., Ye, G., Chen, H., Gong, X., & Tang, Z.

(2023). BugPre: an intelligent software version-to-version bug

prediction system using graph convolutional neural networks.

Complex & Intelligent Systems, 9(4), 3835–3855.

[29] Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T.,

Ragkhitwetsagul, C., & Ghose, A. (2021). Automatically

recommending components for issue reports using deep learning.

Empirical Software Engineering, 26(2), 1–39.

[30] Cynthia, S.T., Banani, R., & Debajyoti, M. (2022). Feature

transformation for improved software bug detection models. In 15th

Innovations in Software Engineering Conference, pp. 1–10

[31] Giray, G., Kwabena, E. B., Ömer, K., Önder, B., & Bedir, T. (2023).

On the use of deep learning in software defect prediction. Journal

of Systems and Software, 195, 111537.

[32] Xuewu, Z. H. A. O., Hongmei, W. A. N. G., Chaohui, L. I. U.,

Lingling, L. I., Shukui, B. O., & Junzhong, J. I. (2022). Artifcial

jellyfsh search optimization algorithm for human brain functional

parcellation. Journal of Frontiers of Computer Science &

Technology, 16(8), 1829–1841.

