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Abstract-There are currently a lot of biological data 

available, and data mining is essential in sorting the data. 

Many research on the use of data mining in 

bioinformatics have been conducted as a result of the 

efficacy of data mining techniques in all facets of 

computational biology. Over the past two decades, a body 

of literature on data mining methods in bioinformatics 

analysis has grown. A periodic examination of survey 

articles is essential, and grouping them makes it easier for 

the researcher to identify the study. This document also 

teaches non-specialists how to select among a variety of 

currently used strategies based on their strengths and 

weaknesses. In this study, an effort is made to offer a 

thorough analysis of the algorithms that are optimal for 

obtaining the desired outcome. 
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I. INTRODUCTION 

Proteins, the organism's most conspicuous macromolecules, 

are involved in nearly every biological function. Many critical 

operations are carried out by protein macromolecules that 

include structural support for cells; immunological defence; 

enzymatic catalysis; transmission of cell signals; control of 

transcription and translation. The diverse three-dimensional 

structures that distinct protein molecules choose make this 

feasible. Based on ground-breaking studies from the 1970s, it 

is believed that a protein's amino acid sequence influences its 

tertiary structure [1]. Biological research has remained 

anchored in the sequence-structure- function paradigm of 

proteins since the early 1980s. The GenBank database now 

contains more than 2600 million known nucleotide sequences 

as of 2021, thanks to significant achievements in genome 

sequencing over the preceding four decades [2-5]. Nearly 200 

million nucleotide sequences have been translated into amino 

acid sequences in UniProt [6]. 

Despite the abundance of information, it is difficult to deduce 

the biological activities of proteins only from their amino acid 

sequences. This is because the three- dimensional structures 

of proteins are mostly responsible for these activities. 

Intrinsically disordered proteins, which comprise for up to 

30% of the human proteome, are an intriguing exception to 

this norm [7- 9]. They can function even if they lack well 

defined tertiary structures. When proteins bind to their 

binding partners and carry out their biological functions, they 

can undergo disorder-to-order transitions and gain tertiary 

structures. Some of the most exact methods for discovering a 

protein's structure include cryo-electron microscopy [10], 

NMR spectroscopy [11], and X-ray crystallography [12]. 

Prediction and identification of protein structures are crucial 

for biological processes to take place. Protein structures have 

been experimentally solved significantly more slowly than 

protein sequences because solving a protein structure requires 

significant human labour and expenditure [13–18]. The many 

levels of protein structures are shown in Figure 1. 

Prediction approaches for protein structure are classified as 

either template-based or template-free based on the use of a 

template structure (FM). TBM generates models by 

duplicating and enhancing the structural frameworks of other 

related proteins found in the PDB, whereas FM aims to predict 

protein structures without reference to global template 

structures. Methods like FM are also referred to as "ab initio" 

or "de novo" modelling. To decrease the gap between the 

amount of known protein sequences and experimentally solved 

structures, the most effective but difficult method is to use 

extremely accurate protein structure prediction algorithms. 

These findings also reveal the fundamental principles that 

drive the sequence-to structure to function paradigm in 

proteins. 

In order to accurately forecast the structure of a protein, it is 

necessary to anticipate the secondary structure. To predict 

protein secondary structures, bioinformatics uses simply the 

amino acid sequence of the proteins under question. 

Secondary structural components such as helices and sheets 

are widely considered to make up 

proteins. Secondary structures are densely packed in a 

hydrophobic environment within the protein core. Prediction 

of a protein's three-dimensional structure from its amino acid 

sequence is known as protein structure prediction. From the 

primary structure, it is possible to extrapolate secondary and 

tertiary structures. Protein sequences can be solved in part 

using three- dimensional structures. It has been proven that 

adopting consensus approaches that integrate complimentary 

algorithms to increase prediction quality is a valuable tool in 

the CASP (Critical Assessment of Structure Prediction) 

competitions [19, 20]. 
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There have been several advances in computational protein 

structure prediction during the last few decades. Proteins fold 

themselves into three-dimensional structures using only the 

information stored in their residues. Systems called protein 

structure predictors, which can use information from the 

protein sequence to limit possible local and global 

conformations, are used to guide folding. In consensus 

techniques, template selection and model averaging are 

typically done by a majority vote. Primary methods that 

diverge or converge on the erroneous fold will deviate from 

the original fold, which can improve quality. Machine 

learning techniques, particularly artificial neural network 

models, have long been used in structural bioinformatics. To 

create larger abstractions, deep learning algorithms are able to 

dismiss minor changes in input. This is due to the fact that 

deep learning techniques are increasingly being applied in 

protein structure prediction because of these two 

characteristics and the rising availability of protein datasets. 

Prediction approaches for protein structure are classified as 

either template-based or template-free based on the use of a 

template structure (FM). TBM generates models by 

duplicating and enhancing the structural frameworks of other 

related proteins found in the PDB, whereas FM aims to predict 

protein structures without reference to global template 

structures. Methods like FM are also referred to as "ab initio" 

or "de novo" modelling. To decrease the gap between the 

amount of known protein sequences and experimentally solved 

structures, the most effective but difficult method is to use 

extremely accurate protein structure prediction algorithms. 

These findings also reveal the fundamental principles that 

drive the sequence-to structure to function paradigm in 

proteins. 

 

Fig-1. Levels of Protein Structure 

Primary methods that diverge or converge on the erroneous 

fold will deviate from the original fold, which can improve 

quality. Machine learning techniques, particularly artificial 

neural network models, have long been used in structural 

bioinformatics. To create larger abstractions, deep learning 

algorithms are able to dismiss minor changes in input. This is 

due to the fact that deep learning techniques are increasingly 

being applied in protein structure prediction because of these 

two characteristics and the rising availability of protein 

datasets. 

In order to predict a protein's structure, one must first know 

the amino acid sequence, which is the beginning point for this 

procedure. The application of deep machine learning 

algorithms [21] to provide high- quality geometric feature 

predictions has had a significant impact on the science of 

protein structure prediction. Many structural elements, such 

as contact lengths and inter-substance torsion angles, can be 

forecasted using deep learning. Additionally, multi- layer 

neural networks provide a high degree of model training 

accuracy. The application of deep machine learning methods 

to provide high-quality geometric feature predictions has 

revolutionized protein structure prediction. When it comes to 

predicting various structural features like hydrogen bonds and 

inter- residue interactions, deep learning excels. As an image 

segmentation problem, the pair-wise contact prediction 

problem was reformed as a pair of residues representing a pixel 

in the image. It was AlphaFold that introduced distance maps 

as a tool for guiding folding. Deep neural networks were used 

to predict distance maps based on 

10query sequences. These maps were then used to guide the 

assembly of fragments and folding simulations based on 

gradient descent. AlphaFold also employed deep learning to 

create new structural components as part of their 

groundbreaking fragment creation technique. Deep learning-

based contact and distance map prediction has raised the topic 

of what other limitations deep learning can effectively 

foresee. Inter- residue angle orientation is a simple extension 

of distance prediction. Just as distance information cannot tell 

two mirror images of the same structure different, it is 

impossible to determine the geometry of a structure without 

first learning about its torsional angle orientations. Inter-

residue torsion angle prediction was recently broadened by 

trRosetta, who used an integrated deep ResNet to predict 

pairwise residue distances and torsion angles between 

residues based on co- evolutionary features. 

Thus, novel designs such as training gimmicks, weight- 

optimization strategies, and Recurrent NNs that are 

commonly utilized to anticipate secondary structure, solvent 

accessibility, disorder and backbone torsion angles continue 

to be developed at an accelerated rate. End-to-end 

differentiability means that during NN training, all parts of 

the procedure, starting with 3D coordinate prediction, can be 

altered simultaneously. As an example, the impact of deep 

reinforcement learning and generative models on CASP has 

been minimal (Critical Assessment of Structure Prediction). 

Computational approaches have dramatically reduced the 

time and expense of generating new medicines. To deal with 

challenges of all shapes and sizes, we'll have to use a variety 

of drug screening and design methodologies. Machine 

learning and deep learning approaches, which go beyond the 

constraints of prior studies, are the primary emphasis of this 

study. 
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II. LİTERATURE SURVEY 

Multi-objective evolutionary techniques that incorporate 

Rama torsion angle-based sampling, loop- based resampling, 

stochastic rank-based selection, loop-based crossover, and 

near native sampling have been devised by Zhang Wei-Li et 

al. [Nov 2018].' The secondary structural similarity criterion 

could be used to overcome the energy function's inaccuracy. 

For protein secondary structure prediction, Zhou et al. [23] 

used a combination of deep neural networks and 

reinforcement learning (CDNN). In addition to the abstraction 

skills of CNN and the sequence data processing 

capabilities of LSTM, CDNN also includes a significant 

classification capability. The cross-entropy error between 

protein secondary structure labels and dense layer outputs is 

used to train the CDNN architecture. 

Deep ResNet was developed by Xu, Jinbo et al. [24] to 

predict protein contact/distance and template-free protein 

folding. According to the findings, deep ResNet has made 

significant progress in recent years in predicting protein-

protein interactions and tertiary structure. Because it does not 

need evolutionary knowledge to make predictions about 

natural protein folds, the proposed deep ResNet can correctly 

fold most of the proteins developed by humans. 

It was proposed by Xu and colleagues [25] that a 

computational method termed "deep structural inference" may 

be used to predict protein residue/residue interactions using a 

deep-learning algorithm and template-based structural 

modelling. Large-scale tertiary structure prediction of more 

than 1,200 single-domain proteins for the first time reveals 

much superior predictive capabilities. In addition, it appears 

that the insights offered by statistical co- evolutionary 

analyses cannot simply be replaced by providing the 

unprocessed frequency distributions from several sequence 

alignments, as CCMPred did to obtain the coupling scores. 

End-to-end differing recurrent geometric network (RGN) was 

developed by Chowdhury et al [26] to predict protein 

structure from individual sequences. When multiple sequence 

alignment is not possible for orphan and designer proteins, 

this is a computationally efficient technique that has numerous 

advantages. With the help of a simple approach to explain the 

C backbone's geometry, RGN2 accomplishes this. 

Protein secondary structure prediction was improved by Guo et 

al. [27] by developing a multi-advanced deep belief network-

based approach. They were able to boost forecast accuracy by 

more than 80% as a result of their efforts. The experiment 

also demonstrated how to forecast secondary structure using 

hidden Markov model profiles based on emission/transition 

probability. However, the network's feature set will be 

imbalanced. By feeding a protein feature vector, which 

combines the suggested MOS descriptor with AA 

classification, into a DNN, Wang et al [28] were able to 

predict the PPIs. The suggested MOS descriptor has the 

ability to take into account the order connection of the entire 

AA sequence, in contrast to earlier protein representation 

like AC, CT, and LD. The ReLU AF, ADAM optimizer, and 

cross-entropy as the cost function were chosen as network 

settings for the assignment with the author providing adequate 

justifications. By adjusting their range, the other parameters, 

including network depth, width, and the LR, were computed 

for the specific approach and the best ones were chosen. 

Finally, the author separately trained the DNN model with 

AC, CT, and LD and compared their results with the 

suggested Work. 

Jha and Saha [29] carried out another intriguing and novel 

piece of work utilising an LSTM-based classifier that 

integrated features produced by two distinct protein modalities, 

i.e. sequence-based and structure-based information. 

First, using the structural representation of the proteins, three 

separate protein representations based on three distinct 

attributes were obtained, and then, using a ResNet50 model, 

corresponding feature sets were obtained. In 2018, Li et al. 

presented the first study on sequence-based PPI prediction 

using DNs that was completely based on auto-feature 

engineering, i.e. without the addition of manually derived 

features [30]. The input must be numerical for the NN 

architecture to learn the data. In order to transform the protein 

sequence, the author randomly assigned a natural number to 

each AA. 

Moreover, Gonzalez-Lopez et al. [31] conducted PPIs 

prediction without the use of feature engineering by using 

RNNs and embedding systems. Every triplet in the sequence 

was given a token (an integer) as part of the tokenization 

procedure in order to represent the sequence numerically. 

Each protein's pair representation in the NN was fed to and 

analysed by two branches with a comparable design 

independently. The architecture's embedding, recurrent, and 

FC layers each fulfilled a distinct function. To prevent over-

fitting and input standardisation, two crucial parameters 

Dropout and Branch normalisation were also applied. 

III. OBSERVATİONS AND DİSCUSSİON 

The outcomes of CNN and a combination of GAN and CNN 

were compared by Y. Zhao et al [Nov 2020] An improvement 

in accuracy may be shown when compared to using solely 

GAN algorithm for feature extraction. Compared to older 

methodologies, the CASP10 and CASP11 datasets produce 

more precise results overall. 

For protein secondary structure prediction, Zhou et al. [23] 

used a combination of deep neural networks and 

reinforcement learning (CDNN). The CDNN technique's 

efficacy is demonstrated via empirical validation on two 

different datasets. The forecast, on the other hand, is 

unaffected by the imbalances. Because of this, forecasts 

become less accurate. 

Deep ResNet was developed by Xu, Jinbo et al. [24] to 

predict protein contact/distance and template-free protein 

folding. When it comes to using inter-residue orientation 

information, the proposed 3D modelling approach is still less 

advanced and more rudimentary than previous approaches. 

End-to-end differing recurrent geometric network (RGN) was 

developed by Chowdhury et al [26] to predict protein 

structure from individual sequences. In order to reconstruct 

the backbone's structure sequentially, this technique must 

restrict itself to just limiting local dependencies between C 

atoms (curvature and torsion angles). 
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Recently, DL technology has become a focal point in both the 

scientific community and the corporate world, thanks to a 

number of high-profile studies. Whilst ML has already 

facilitated remarkable progress in bioinformatics, DL is 

expected to yield even more substantial and encouraging 

outcomes in this area. In this study, we conduct a 

comprehensive evaluation of the three DL architectures—

DNNs, CNNs, and RNNs—and their variants in the context 

of PPI prediction based on sequence information. We also 

cover the different strategies in terms of data, objectives, and 

DL architecture structure, and provide optimal values for the 

relevant parameters. 

While it has been established that all of the architectures in 

question are capable of yielding positive results in this 

domain, many new challenges have emerged and must be 

addressed before any of them can be considered fully resolved. 

These include, but are not limited to, insufficient data and 

picking an architecture that makes the most of beneficial 

hyperparameters. Therefore, widespread adoption of DL 

methods requires extensive study. So, the researchers can 

benefit from the in-depth analysis presented here, which was 

developed after painstakingly mining every accessible piece 

of information. It is hoped that the insights gained from this 

overview of the literature on the topic of DNs in PPI prediction 

would be useful to researchers in their ongoing efforts. 

IV. CONCLUSİON AND FUTURE TRENDS 

Mining data is essential for the organisation of the huge 

quantities of biological data that are currently available. There 

have been a multitude of research studying the application of 

data mining techniques in bioinformatics due to the fact that 

these methods are so universally beneficial in the field of 

computational biology. During the course of the previous two 

decades, research on data mining techniques for 

bioinformatics analysis has accumulated a substantial body of 

written material. It is crucial to regularly evaluate survey 

papers, and doing so is made easier when the articles are 

categorised into subjects that are conceptually related to one 

another. This document also advises readers who are not 

specialists in the industry on how to balance the pros and 

disadvantages of various approaches and make a decision that 

is informed by the information gathered. The goal of this 

study is to produce a detailed analysis of the algorithms that 

are most effective at achieving the objectives that have been 

established. 
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