
International Journal on Advances in Engineering Technology and Science

Volume: 5, Issue: 1, 2024, e-ISSN: 2455-3131

DOI: 10.5281/zenodo.10709588

© 2016-2024, IJAETS 39

Comparative Analysis of Microservices

Architectures: Evaluating Performance, Scalability,

and Maintenance

Mahesh Kumar Bagwani1, Gaurav Kumar Shrivastava2

1MTech Scholar, 2Associate Professor

Sanjeev Agrawal Global Educational University, Bhopal

1maheshbagwani7@gmail.com, 2gourav.s@sageuniversity.edu.in

Abstract— Microservices have become a key architectural

paradigm in the ever-changing field of web application

development. This study compares and contrasts

microservices architectures in great detail, paying close

attention to each one's scalability, maintenance, and

performance. This research analyses a variety of

microservices frameworks and reveals the subtleties of

their architecture through a methodical assessment.

Through an examination of critical performance

indicators like response times, scalability under different

workloads, and ease of ongoing maintenance, the study

seeks to identify best practices and draw attention to

potential issues related to each architecture. The

knowledge gathered from this research will help

architects and developers choose or optimize

microservices frameworks with confidence. This paper

not only contributes to the academic discourse but also

offers pragmatic guidance for real-world applications,

ensuring that the chosen architecture aligns seamlessly

with the specific needs of a project. Embracing a holistic

approach, this research provides a nuanced

understanding of the trade-offs inherent in diverse

microservices approaches, fostering a more robust and

informed development community.

Keywords— Microservices, Monolithic, Jenkins, JMeter, KVM

I. INTRODUCTİON

In the fast-evolving landscape of software development,

organizations seek robust technological solutions. Over time,

various architectural approaches have been crafted by

software developers to enhance resource efficiency and meet

functional requirements. The traditional monolithic

architecture, widely successful in small and large-scale

projects, faces performance challenges with increasing data

volumes. Solutions have emerged, such as technology

migration and the adoption of more powerful servers, but

these may lead to higher resource expenses if not chosen

wisely.

In recent decades, innovative architectures, notably

microservices, have gained prominence, replacing monolithic

systems. Microservices offer a distributed approach with

isolated services, but their implementation, especially in

scaling to the Cloud, introduces challenges. Automation tools

like DevOps, Docker, Chef, and Puppet streamline processes

but require additional development, migration, and

integration efforts. Companies adopting microservices face

concerns about infrastructure costs, orchestration in

production, and organizational challenges.

This study addresses the lack of precision in measuring the

migration process from monolithic to microservices

architectures. It emphasizes compiling research results on the

evaluation of both architectures, focusing on performance

metrics like CPU, memory consumption, network

performance, and development complexities. The study

evaluates two scenarios: a monolithic architecture on a virtual

server with KVM and a microservices architecture running in

containers. Stress tests under similar conditions allow for a

quantitative comparison using a nonparametric regression

model.

Key contributions of the study include a critical analysis of

research on monolithic versus microservices performance, a

review of variables impacting migration performance, and an

evaluation of response times and resource consumption in

microservices architecture. The article concludes with

insights into the state-of-the-art, theoretical framework,

experimental design, findings, and future work considerations.

II. LITERATURE REVIEW

In this section, we dive into the current state of research in the

field. Stubbs et al. [1] explore container technology and

propose Serf Node for service discovery in microservices

architectures. Villamizar et al. [2] compare the cost and

performance of web applications in different architectures,

revealing microservices’ cost-effectiveness. Al-Debagy and

Martinek [3] compare microservices and monolithic

architectures, emphasizing performance under various loads.

Guaman et al. [4] focus on migrating a monolithic application

to microservices and analysing performance metrics.

Akbulut and Perros [5] provide insights into microservices’

performance, considering factors like query response time

and hosting costs. Singh and Peddoju [6] compare

microservice and monolithic deployments, showcasing the

former's advantages in terms of deployment time and

Mahesh Kumar Bagwani and Gaurav Kumar Shrivastava, Comparative Analysis of Microservices Architectures:

Evaluating Performance, Scalability, and Maintenance

40 https://ijaets.in

continuous integration. Various studies, including Ponce et al.

[7], Taibi et al. [8], and Mazlami et al. [9], explore migration

techniques and technical debt reduction in transitioning from

monolithic to microservices.

Kalske et al. [10] examine the evolution challenges of

transitioning to microservices, emphasizing its benefits in

handling complexity. Bures et al. [11] focus on identifying

business applications' transactional contexts for microservices

design. Sarkar et al. [12] analyse the architectural features of

an industrial application for migration to microservices.

Debroy and Miller [13] discuss the challenges and

infrastructure changes in adopting microservices at

VARIDESK.

In comparison, this study stands out by conducting a

comprehensive performance evaluation of both hardware

resources and applications in monolithic and microservices

architectures. The unique approach includes mathematical

modelling for accurate results during service execution,

shedding light on productivity, cost reduction, and efficiency

in hardware resource utilization. This comparative analysis,

especially in a real-world context, distinguishes our study

from previous research efforts.

III. MONOLİTHİC VS MİCROSERVİCES

Monolithic architecture relies on a single development

technology, limiting flexibility as changes in one part of the

system require building and deploying a new version of the

entire system. This approach integrates presentation,

processing, and storage into a single component running on a

server. While offering stability and full system control,

monolithic architectures have drawbacks, including rigidity

and difficulty adapting to new needs. Major players like IBM

and Sun Microsystems have utilized this approach, but its

proprietary nature and high costs pose challenges.

As technology evolves, the complexity of modern systems

demands improvements in software production and

performance. Monolithic architectures, with their inherent

defects, are giving way to more contemporary solutions like

microservices. While some applications, like firmware and

certain security tools, may still find efficiency in monolithic

structures, the shift toward more adaptable architectures is

evident.

As Martin Fowler puts it, "A microservice architectural style

is an approach to developing a single application as a suite of

small services, each running in its process and

communicating with lightweight mechanisms, often an HTTP

resource API. These services are built around business

capabilities and independently deployable by fully automated

deployment machinery." In simpler terms, microservices

break down a large application into small, independent

services that run their processes and communicate through

APIs, allowing for flexibility, scalability, and easier

maintenance [14].

Unlike monolithic architectures, microservices operate as a

collection of individual services that can tolerate failures and

enhance availability. This approach embraces a culture of

automation, with decentralized processes that permit

independent deployments. The application's structure differs

significantly from a monolithic one, as shown in Figure

1. Microservices encapsulate complex business scenarios and

offer the advantage of updating only specific components,

rather than the entire system. This architectural shift brings

forth a new era of adaptability and efficiency in software

development [5,32,33].

Fig-1. Visual representation of a monolithic versus Microservices

architecture.

In our study, we explored two application

architectures: monolithic, running on a Kernel-based Virtual

Machine (KVM), and microservices orchestrated with Docker

containers. Here's a brief overview of the tools we employed

for research, performance measurements, and

implementation:

Kernel-based Virtual Machine (KVM):

• Purpose: Virtualization technology for Linux systems.

• Usage: Implemented as a hypervisor, allowing support

for multiple operating systems and virtualization of

hardware.

• Associated Application: QUEMU, an operating system

emulator.

• Contribution: Provided a stable platform for running the

monolithic application with ease of use through a

graphical interface.

Docker:

• Client and Server: An open platform for building,

transporting, and running distributed applications.

• Docker Compose: Used to define configurations for the

Microservices environment.

• Contribution: Enabled the creation of lightweight,

portable containers for individual services, fostering

independence and ease of deployment.

Other Tools:

• Sublime: A text editor for code and configurations.

• Git: A version control system for maintaining application

integrity.

• Java8 (JRE), NodeJS, NPM: Runtime environments for

application execution.

• MySQL and MongoDB: Databases used for storing

information generated in stress tests.

• Performance Measurement Tools:

International Journal on Advances in Engineering Technology and Science

Volume: 5, Issue: 1, 2024, e-ISSN: 2455-3131

DOI: 10.5281/zenodo.10709588

© 2016-2024, IJAETS 41

• Apache JMeter: A Java-based open-source tool for load

testing and performance measurement.

• Server Agent: A component of JMeter for collecting and

interpreting data during stress tests.

• New Relic: A performance analysis service focusing on

real-time data collection and analysis during stress tests.

Containers:

• Definition: Similar to virtual machines but without the

overhead of a separate kernel.

• Benefits: Fast startup, resource efficiency, and

independence for each workload.

• Challenges: Poor visibility of processes and potential

cybersecurity issues.

• Docker: Widely adopted for container management,

providing solutions for large scale container projects.

Our approach involved an array of open-source tools,

allowing us to implement, configure, and stress-test both

monolithic and microservices architectures effectively. These

tools played a crucial role in enabling flexibility, scalability,

and ease of deployment in our research endeavors.

Fig-2. Tools for performance analysis.

IV. IMPLEMENTATİON

4.1. Application Architecture Design

This section outlines the research process for comparative

performance analysis between monolithic and microservices

architectures. It covers the application architecture design,

data collection, and preliminary results.

4.1.1. Monolithic Architecture (KVM)

The monolithic application, running on KVM, involves a

Node.js cluster, load balancer, and target groups. The

application handles forums, chats, comments, and

notifications. A hierarchical structure and key files are

described.

4.1.2. Microservices Architecture (Docker Containers) The

microservices application uses Docker containers with

AWS’s example as a foundation. Each service (user, thread,

post) runs independently. The directory structure is more

organized. Key files and Docker configurations are detailed.

Fig-3. Monolithic application architecture implemented

Fig-4. Microservices application architecture implemented.

4.2. Performance Testing Scenarios

Two scenarios are presented:

Monolithic Architecture (KVM): Involves a Node.js cluster,

load balancer, and databases running on KVM.

Fig-5. First Case: Monolithic application on a KVM

Microservices Architecture (Docker):

Docker orchestrates containers with separate services for

users, threads, and posts. The databases run in containers, and

a sync volumes container keeps data synchronized.

4.3. Data Collection, Experiments, and Preliminary Results

4.3.1. Data Collection and Experiments

Stress tests are configured with JMeter for both scenarios.

Two scenarios involve generating and selecting data. Tests

focus on server-side performance. Results include total

requests, errors, duration, and requests per second.

Mahesh Kumar Bagwani and Gaurav Kumar Shrivastava, Comparative Analysis of Microservices Architectures:

Evaluating Performance, Scalability, and Maintenance

42 https://ijaets.in

4.3.2. Comparative Analysis and Preliminary Results

• Case 1: Monolithic - 273 requests (2.5/s),

Microservices - 1053 requests (3.1/s).

• Case 2: Monolithic - 2 errors, Microservices - 0

errors. Microservices perform better in requests per second. •

Microservices exhibit better performance in processing

requests and duration.

• A mathematical model is applied to analyze CPU, memory,

disk, and network performance. Examples of recorded data

are provided for microservices and monolithic architectures.

Fig-6. Second Case: Application with microservices on containers

4.4. Comparative Analysis of Microservices

Architectures: Evaluating Performance, Scalability, and

Maintenance

4.4.1. Data Collection Process and Experiments

The stress tests were conducted using JMeter, comparing two

scenarios: Microservices and Monolithic architectures. Both

scenarios underwent identical configurations, with Case 1

generating GET requests to create databases and data, while

Case 2 involved GET requests to select information from

MySQL and MongoDB. The server-side performance was the

focal point, terminating the process upon receiving a server

response.

4.4.2. Comparative Analysis and Preliminary Results

The analysis, validated with New Relic, focused on

performance, scalability, and maintenance.

Request Processing:

Microservices processed all 1053 requests successfully,

monolithic encountered two errors in Scenario 1.

Execution Time:

Microservices demonstrated quicker execution times:

• Case 1: Microservices (00:01:29) vs. Monolithic

(00:01:50)

• Case 2: Microservices (00:12:08) vs. Monolithic

(00:14:17).

Requests/s Enhancement:

Microservices outperformed in requests processed per

second:

• Case 1: Microservices (3.1/s) vs. Monolithic (2.5/s).

• Case 2: Microservices (1.4/s) vs. Monolithic (1.2/s).

Resource Utilization:

Microservices exhibited efficient CPU, memory, disk, and

network performance compared to monolithic.

Table 1. Results of the Stress Test for Both Scenarios:

Monolithic

- Case 1

Microservi

ce - Case 1

Monolithic

- Case 2

Microservi

ce - Case 2

Total

Requests

273 273 1053 1053

OK 273 273 1051 1053

Error 0 0 2 0

Duration

time

0:01:50 0:01:29 0:14:17 0:12:08

Requests/s

(average)

2.5/s 3.1/s 1.2/s 1.4 /s

Min 7 ms 4 ms 22 ms 8 ms

Max 3677 ms 2793 ms 35,784 ms 10,832 ms

Average 1150 ms 936 ms 3934 ms 3411 ms

Median 695 ms 312 ms 2548 ms 715 ms

Standard

deviation

1094.66

ms

1082.4 ms 38.05 ms 4220.21

ms

Total data

Received

85,014.43

KB/s

105,193.29

KB/s

86,342.29

KB/s

102,433.12

KB/s

Sent 0 KB/s 0 KB/s 0 KB/s 0 KB/s

In conclusion, the comparative analysis Favors microservices,

showcasing superior reliability, faster execution, and efficient

resource utilization. These findings highlight the advantages

of microservices over monolithic architectures in terms of

performance, scalability, and maintenance. The adoption of

microservices is recommended for optimizing system

performance and ensuring future scalability.

REFERENCES

[1] Stubbs, J.; Moreira, W.; Dooley, R. Distributed systems of microservices

using docker and serfnode. In Proceedings of the IEEE 2015 7th

International Workshop on Science Gateways, Budapest, Hungary, 3–5

June 2017; pp. 34–39.

[2] Villamizar, M.; Garces, O.; Ochoa, L.; Castro, H.; Salamanca, L.; Verano,

M. Infrastructure cost comparison of running web applications in the cloud

using AWS lambda and monolithic and microservice architectures. In

Proceedings of the 2016 16th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), Cartagena, Colombia, 16–

19 May 2016; pp. 179–182.

[3] Al Debagy, O.; Martinek, P. A Comparative Review of Micr oservices and

Monolithic Architectures. In Proceedings of the 2018 IEEE 18th

International Symp osium on Computational Intelligence and Informatics

(CINTI), Budapest, Hungary, 21–22 November 2018; pp. 149– 154.

[4] Guaman, D.; Yaguachi, L.; Samanta, C.C.; Danilo, J.H.; Soto, F.

Performance evaluation in the migration process from a monolithic

application to microservices. In Proceedings of the IEEE 2018 13th Iberian

Conference on Information Systems and Technologies (CISTI), Caceres,

Spain, 13–16 June 2018; pp. 1–8.

[5] Akbulut, A.; Perros, H.G. Performance Analysis of Microservices Design

Patterns. IEEE Internet Comput. 2019, 23, 19–27. [CrossRef]

[6] Singh, V.; Peddoju, S.K. Container-based microservice architecture for

cloud applications. In Proceedings of the IEEE 2017 International

International Journal on Advances in Engineering Technology and Science

Volume: 5, Issue: 1, 2024, e-ISSN: 2455-3131

DOI: 10.5281/zenodo.10709588

© 2016-2024, IJAETS 43

Conference on Computing, Communication and Automation (ICCCA),

Greater Noida, India, 5–6 May 2017; pp. 847–852.

[7] Ponce, F.; Márquez, G.; Astudillo, H. Migrating from monolithic

architecture to microservices: A Rapid Review. In Proceedings of the 2019

IEEE 38th International Conference of the Chilean Computer Science

Society (SCCC), Concepcion, Chile, 4–9 November 2019; pp. 1–7.

[8] Taibi, D.; Lenarduzzi, V.; Pahl, C. Processes, motivations, and issues for

migrating to microservices architectures: An empirical investigation. IEEE

Cloud Comput. 2017, 4, 22–32. [CrossRef]

[9] Mazlami, G.; Cito, J.; Leitner, P. Extraction of microserv ices from

monolithic software architectures. In Proceedings of the 2017 IEEE

International Conference on Web Services (ICWS), Honolulu, HI, USA,

25–30 June 2017; pp. 524–531.

[10] Kalske, M.; Mäkitalo, N.; Mikkonen, T. Challenges when moving from

monolith to microservice architecture. In International Conference on Web

Engineering; Springer: Cham, Switzerland, 2017; pp. 32–47

[11] Bures, T.; Duchien, L.; Inverardi, P. (Eds.) Software Architecture—

Proceedings of the 13th European Conference, ECSA 2019, Paris, France,

9–13 September 2019; Springer Nature: Cham, Switzerland, 2019;

Volume 11681.

[12] Sarkar, S.; Vashi, G.; Abdulla, P.P. Towards Transforming an Industrial

Automation System from Monolithic to Microservices. In Proceedings of

the 2018 IEEE 23rd International Conference on Emerging Technologies

and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; pp.

1256– 1259.

[13] Debroy, V.; Miller, S. Overcoming Challenges with Continuous

Integration and Deployment Pipelines When Moving from Monolithic

Apps to Microservices: An experience report from a small company. IEEE

Softw. 2019, 37, 21–29. [CrossRef]

[14] Kratzke, N. About Microservices. Contain. Their Underestim. Impact

2015, 961, 165–169.

