
International Journal on Advances in Engineering Technology and Science

Volume: 5, Issue: 1, 2024, e-ISSN: 2455-3131

DOI: 10.5281/zenodo.10666637

© 2016-2024, IJAETS 25

Analysis of Forward Pass RNN with Hyperbolic

Tangent Function for Software Defect Prediction

Swati Rai1, Kirti Jain2

1Research Scholar, 2Associate Professor
1,2School of Advanced Computing, Sanjeev Agrawal Global Educational University, Bhopal

Abstract– Software failure prediction and proneness have

long been considered critical challenges for the IT

industry and software professionals. Conventional

approaches may detect software defects inside an

application, but they need previous knowledge of

problems or faulty components. Automated software

fault recovery models enable the programme to

significantly predict and recover from software issues via

the use of machine learning techniques. This feature

reduces mistakes, time, and money while also making the

programme run more smoothly. A software defect

prediction development model was given using machine

learning techniques, which could enable the programme

to carry out its intended purpose. A range of optimisation

evaluation benchmarks, including as accuracy, f1-

measure, precision, recall, and specificity, were also used

to evaluate the model's performance. The FPRNN-HTF

(Forward Pass RNN with Hyperbolic Tangent Function)

deep learning prediction model is based on convolutional

neural networks and its hyperbolic tangent functions.

The evaluation process showed how well CNN algorithms

were used and how accurate they were. Additionally, a

comparative metric is used to assess the proposed

prediction model in comparison to other approaches. The

collected data showed how well the FPRNN-HTF

approach performed.

Keywords– FPRNN-HTF (Forward Pass RNN with

Hyperbolic Tangent Function), precision, recall,

specificity, F1-measure, and accuracy.

I. INTRODUCTION

Software defects have a substantial effect on the reliability,

quality, and maintenance costs of the programme. Since most

software flaws are hidden, it might be challenging to get bug-

free software even with rigorous application. Developing a

software bug prediction model that might detect problematic

modules early on is also a major difficulty in software

engineering. One of the most important tasks in software

development is software bug prediction. This is so that by

foreseeing the issue modules before software is implemented,

user satisfaction and overall programme performance may be

raised. Furthermore, early software issue prediction

maximises resource efficiency and improves software

flexibility to a variety of scenarios.

A lot of research has been done on using machine learning

techniques to forecast software defects. Consider the linear

Auto-Regression (AR) method for predicting the faulty

modules. The study predicts future software problems based

on historical data on cumulative vulnerabilities in software.

The study also evaluated and contrasted the AR model with

the Known Power Model (POWM) using the Root Mean

Square Error (RMSE) approach. The study also included

three datasets for evaluation, and the results were promising.

The study looked at how well a number of machine learning

methods worked for predicting defects. The most current

advancements in machine learning-based software bug

prediction as well as the important prior research on each

machine learning technique.

II. BACKGROUND

According to Görkem Giray et al. [1], robotic programming

deformity expectation (SDP) strategies are used

progressively, sometimes in conjunction with artificial

intelligence (AI) methods. However, current machine

learning techniques need highlights to be physically

removed, which is laborious, time-consuming, and only

captures a portion of the semantic information shown in

defect describing equipment. Thanks to deep learning (DL)

methodologies, professionals have the priceless possibility to

extract and profit from more complicated and multi-layered

information.

Iqra Batool et al. [2] state that programming engineers may

leverage programming issue/deformity expectation to find

problematic builds—like modules or classes—early in the

product advancement life cycle. Techniques like deep

learning, artificial intelligence, and information mining are

used to unfulfilled programme expectations.

Haowen Chen et al. [3] established the term "heterogeneous

deformity expectation" (HDP), which describes the

imperfection prediction amongst projects with varying data.

Most existing HDP techniques put source and target data into

a traditional measurement space where each piece has no true

meaning, significantly limiting their interpretability. In

addition, class inequality is a difficulty that HDP often

tackles.

Phishing assaults, according to Cagatay Catal et al. [4], try to

obtain personal information by using advanced methods,

instruments, and strategies. Mobile applications, social

engineering, internet forums, and joyful infusion are a few

instances of these. Deep learning computations has out to be

one of the most successful phishing location strategies, which

were created to stop and reduce the dangers of these assaults.

Swati Rai and Kirti Jain, Analysis of Forward Pass RNN with Hyperbolic Tangent Function for Software Defect

Prediction

26 https://ijaets.in

Xieling in addition to others [5], Recent years have seen the

emergence of many open-source and endeavor-supported

information diagrams, signalling a notable progress in the

integration of information depiction and thinking across

several fields, such as computer vision and natural language

processing. With an emphasis on the topical examination

structure, this study aims to comprehensively analyse the

condition and trends of information diagrams today.

In Cagatay et al. (2006), novel methods are proposed for

recognizing and removing the different kinds of malware,

where deep learning computations are essential. Although a

lot of effort has been paid to the development of DL-based

portable malware detection approaches, it hasn't been

completely investigated yet. Finding, gathering, and

analyzing published works on the use of deep learning

methods to portable malware detection is the aim of this

endeavour.

Reality expectation is one of the main obstacles to

programming language development and progress in order to

further improve programming quality and dependability

(Akimova et al., Deform et al., 2007). Finding the

contaminated source code exactly and properly is the issue in

this field. Creating a prediction model with flaws is a difficult

task for which several solutions have been proposed

throughout time.

III. PROBLEM IDENTIFICATION

Analytical approaches are often used in development

processes for source code verification and examination. This

process may be carried either manually or automatically

using a variety of tools, including those for static and

dynamic code analysis. Recent years have witnessed a boom

in the creation of tools for static code analysis, which

provides very practical, high-value answers to a wide range

of problems faced by software development organizations.

However, since there are a lot of false positive and false

negative results, these strategies are challenging to use in

practical situations. Therefore, a different method or strategy

for static code analysis has to be found, such as Machine

Learning (ML) methods.

The following is a list of the issues that prior research has

revealed:

• Relevant software defects are not always easy to find.

• The recovery of a software problem is not fully understood.

• It may discover the unidentified software issue due to its

low accuracy.

IV. RESEARCH OBJECTIVES

The planned work's goals are as follows:

• To improve the precision of faultless software bug recovery.

• To improve recollection for software bugs that affect the

retrieval process in every way.

• To improve software bug detection accuracy.

V. METHODOLOGY

The Algorithm of proposed methodology FPRNN-HTF

(Forward Pass RNN with Hyperbolic Tangent Function) is as

follows

I = Number of input layers

H = Number of hidden layers

O = Number of output layers

S = Number of data set instances

Step 1: for i = 1 to H

Step 2: for j = 1 to S

calculating the forward for the forward hidden layers with

activation function

()1tanhf f f f f

t h t x t hh W h W x b−= + +

end for

Step 3: for j=S to 1

calculating the backward pass for the backward hidden

layer’s activation function

()1tanhb b b b b

t h t x t hh W h W x b−= + +

end for

end for

Step 4: for i =1 to O

calculating the forward pass for the output layer using the

previous stored activation function

 () ()f f b b

t i y t y t yi t
P y x W h W h b


= + +

Wy is the weight matrix connecting the hidden layer to output

layer,

Wh is the weight matrix that connects hidden to hidden layer,

and Wx is the weight matrix that connects input layer to

hidden layer.

International Journal on Advances in Engineering Technology and Science

Volume: 5, Issue: 1, 2024, e-ISSN: 2455-3131

DOI: 10.5281/zenodo.10666637

© 2016-2024, IJAETS 27

by is the output layer bias vectors, and bh is the hidden layer

bias vectors.

For the final nonlinearity r, and use tanh as an activation

function for classification. According to this form, the RNN

will evaluate the output yt according to the information

propagated through the hidden layer regardless of whether it

depends directly or indirectly on the values

   1 21
, ,....,

t

i ti
x x x x

=
= .

end for

end for

The Architecture of proposed methodology FPRNN-HTF

(Forward Pass RNN with Hyperbolic Tangent Function) is as

follows

Fig.1- Process of proposed work

VI. RESULTS AND ANALYSIS

The following metrics are collected using a Jupyter notebook

with Python 3.11.1 running on Anaconda Navigator. CS1.csv

data from the PROMISE dataset is used to calculate

precision, recall, F1-Score, and accuracy using the suggested

FPRNN-HTF algorithm.

Fig.2- Complexity Evaluation of Bug Frequency for FPRNN-HTF

(Proposed Prediction Model)

Fig.3- Calculation of confusion matrix, precision, recall, F1-Score

and accuracy among different models and FPRNN-HTF (Proposed

Prediction Model)

Table 1: Estimation of Precision, Recall, F1-Score and

Accuracy among different models and FPRNN-HTF

(Proposed Prediction Model)

Models Precision Recall F1-

Score

Accuracy

Random

Forest

0.9 0.83 0.9 80.65 %

Naïve

Bayes

0.94 0.82 0.88 80.10 %

Logistic

Regression

0.93 0.8 0.88 79.5 %

Decision

Tree

0.83 0.84 0.83 74.86 %

ANN 0.92 0.84 0.9 82.77 %

FPRNN-

HTF

(Proposed)

0.95 0.96 0.98 96 %

Fig.4- Graphical Analysis of Precision among different models

and FPRNN-HTF (Proposed Prediction Model)

In the context of bug prediction, the accompanying image

illustrates that the suggested model delivers more accuracy

when compared to other models. FPRNN-HTF outperforms

Naive Bayes by a margin of 0.01 in terms of accuracy.

Swati Rai and Kirti Jain, Analysis of Forward Pass RNN with Hyperbolic Tangent Function for Software Defect

Prediction

28 https://ijaets.in

Fig.5- Graphical Analysis of Recall among different models and

FPRNN-HTF (Proposed Prediction Model)

The suggested model performs better than previous models

in terms of recall for bug prediction, as shown in the graph

above. Recall for FPRNN-HTF is 0.12 times higher than that

of Decision Tree and ANN prediction models.

Fig.6- Graphical Analysis of F1-Score among different models and

FPRNN-HTF (Proposed Prediction Model)

The suggested model's higher F1-score compared to previous

models is seen in the following graph. FPRNN-HTF

outperforms Random Forest and ANN by 0.08 points in

terms of F1-score.

Fig.7- Graphical Analysis of Accuracy among different models

and FPRNN-HTF (Proposed Prediction Model)

The following data demonstrates that the suggested model

provides a higher level of prediction accuracy for defects

when compared to the existing models. Compared to the

ANN prediction model, the FPRNN-HTF prediction model

has a 13.23% higher accuracy.

VII. CONCLUSION

To get the desired results in this experiment, we used the

FPRNN-HTF model. Our investigation shows that feature

selection and cross validation were not given enough

consideration in previous efforts. On big datasets, the

suggested method performs better than others in terms of

accuracy (98.16%). Since it is computationally intensive (it

prevents overfitting and provides quick prediction speeds)

and adaptable in application (it can be used for both

regression and classification issues), the combination of the

five proposed algorithms produces the best results. It has

been an ongoing project to look at this technique further for

bug prediction in deep learning models.

These should lead to certain conclusions:

1. The suggested model has a greater accuracy than FPRNN-

HTF. If we compare this accuracy to Naïve Bayes, it has risen

by 0.01.

2. Recall is greater with the suggested model than with

FPRNN-HTF Regression. Recall for FPRNN-HTF is 0.12

times higher than that of Decision Tree and ANN prediction

models.

3. The proposed model outperforms the FPRNN-HTF in

terms of F1-Score. There is a 0.08 difference between

Random Forest and ANN.

4. The accuracy of the suggested model is higher than that of

ANN. A 13.23% improvement in accuracy has been seen.

Therefore, FPRNN-HTF (Forward Pass RNN with

Hyperbolic Tangent Function) is a more accurate approach

for software bug prediction.

We suggest a method that improves diagnosis accuracy,

which is essential for a successful course of therapy. Future

accuracy assessments should make use of fresh datasets, and

further AI techniques have to be used to verify the estimate's

accuracy. The recommended model has a processing time

constraint since the train data performance estimate requires

a huge quantity of data. In the future, the same algorithms

and real-time data will be used to measure the system's

efficacy.

REFERENCES

[1] Görkem Giray, Kwabena Ebo Bennin, Ömer Köksal, Önder Babur,

Bedir Tekinerdogan, “On the use of deep learning in software defect

prediction”, The Journal of Systems & Software, 2023.

[2] Iqra Batool, Tamim Ahmed Khan, “Software fault prediction using

data mining, machine learning and deep learning techniques: A

systematic literature review”, Computers and Electrical Engineering,

May 2022.

[3] Haowen Chen, Xiao-Yuan Jing, Yuming Zhou, Bing Li, Baowen Xu,

“Aligned metric representation based balanced multiset ensemble

learning for heterogeneous defect prediction”, Information and

Software Technology, July 2022.

[4] Cagatay Catal, Görkem Giray, Bedir Tekinerdogan, Sandeep

Kumar & Suyash Shukla, “Applications of deep learning for phishing

https://www.sciencedirect.com/journal/computers-and-electrical-engineering
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://link.springer.com/article/10.1007/s10115-022-01672-x#auth-Cagatay-Catal
https://link.springer.com/article/10.1007/s10115-022-01672-x#auth-G_rkem-Giray
https://link.springer.com/article/10.1007/s10115-022-01672-x#auth-Bedir-Tekinerdogan
https://link.springer.com/article/10.1007/s10115-022-01672-x#auth-Sandeep-Kumar
https://link.springer.com/article/10.1007/s10115-022-01672-x#auth-Sandeep-Kumar
https://link.springer.com/article/10.1007/s10115-022-01672-x#auth-Suyash-Shukla

International Journal on Advances in Engineering Technology and Science

Volume: 5, Issue: 1, 2024, e-ISSN: 2455-3131

DOI: 10.5281/zenodo.10666637

© 2016-2024, IJAETS 29

detection: a systematic literature review”, Knowledge and

Information Systems , 2022.

[5] Xieling Chen, Haoran Xie, Zongxi Li, Gary Cheng, “Topic analysis

and development in knowledge graph research: A bibliometric review

on three decades”, Neurocomputing, October, 2021.

[6] Cagatay Catal, Görkem Giray, Bedir Tekinerdogan, “Applications of

deep learning for mobile malware detection: A systematic literature

review”, 2021.

[7] Konstantin S. Kobylkin, Anton V. Konygin Ilya P. Mezentsev and

Vladimir E. Misilov, “A Survey on Software Defect Prediction Using

Deep Learning”, IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in Practice (ICSE-

SEIP), 2021.

[8] Farah Atif, Manuel Rodriguez, Luiz J. P. Araújo, Utih Amartiwi,

Barakat J. Akinsanya & Manuel Mazzara “A Survey on Data Science

Techniques for Predicting Software Defects”, IEEE Conf. of Software

Engineering, 2021.

[9] Saleema Amershi; Andrew Begel; Christian Bird; Robert

DeLine; Harald Gall; Ece Kamar; Nachiappan Nagappan, “Software

Engineering for Machine Learning: A Case Study”, IEEE Conf. on

Machine Learning, 2019.

[10] George G. Cabral; Leandro L. Minku; Emad Shihab; Suhaib

Mujahid, “Class Imbalance Evolution and Verification Latency in

Just-in-Time Software Defect Prediction”, IEEE/ACM 41st

International Conference on Software Engineering (ICSE), 2019.

[11] Kwabena Ebo Bennin; Jacky Keung; Passakorn Phannachitta; Akito

Monden; Solomon Mensah, “MAHAKIL: Diversity Based

Oversampling Approach to Alleviate the Class Imbalance Issue in

Software Defect Prediction”, IEEE Transactions on Software

Engineering, 2018.

[12] Yuxiang Gao, Yi Zhu, Yu Zhao, “Dealing with imbalanced data for

interpretable defect prediction”, IEEE Conf on Data Analysis, 2017.

[13] Kwabena Ebo Bennin; Jacky Keung; Akito Monden; Yasutaka

Kamei; Naoyasu Ubayashi, “Investigating the Effects of Balanced

Training and Testing Datasets on Effort-Aware Fault Prediction

Models”, IEEE 40th Annual Computer Software and Applications

Conference (COMPSAC), 2016.

[14] Faruk Arar, Kürşat Ayan, “Software defect prediction using cost-

sensitive neural network”, Applied Soft Computing, Volume

33, August 2015.

[15] Deepika Badampudi, Claes Wohlin, Kai Petersen, “Experiences from

using snowballing and database searches in systematic literature

studies”, 19th International Conference on Evaluation and

Assessment in Software Engineering, 2015.

[16] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry

Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio,

“Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation”, Computation and Language, 2014.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer,

“SMOTE: Synthetic Minority Over-sampling Technique”, Artificial

Intelligence, 2011

[18] Gul Calikli; Ayse Tosun; Ayse Bener; Melih Celik, “The effect of

granularity level on software defect prediction”, 24th International

Symposium on Computer and Information Sciences, 2009.

[19] Cagatay Catal, Banu Diri, “A systematic review of software fault

prediction studies”, Expert Systems with Applications, Volume 36,

Issue 4, May 2009.

[20] Alessandro Birolini, “Reliability and Availability of Repairable

Systems”, Reliability Engineering, 2004.

https://link.springer.com/journal/10115
https://link.springer.com/journal/10115
https://www.sciencedirect.com/journal/neurocomputing
https://ieeexplore.ieee.org/xpl/conhome/8790391/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8790391/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8790391/proceeding
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Farah-Atif
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Manuel-Rodriguez
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Luiz_J__P_-Ara_jo
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Utih-Amartiwi
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Barakat_J_-Akinsanya
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Manuel-Mazzara
https://ieeexplore.ieee.org/author/37085668601
https://ieeexplore.ieee.org/author/37282633300
https://ieeexplore.ieee.org/author/37299418300
https://ieeexplore.ieee.org/author/37316569300
https://ieeexplore.ieee.org/author/37316569300
https://ieeexplore.ieee.org/author/37266441700
https://ieeexplore.ieee.org/author/38111202100
https://ieeexplore.ieee.org/author/37267730300
https://ieeexplore.ieee.org/author/37870998000
https://ieeexplore.ieee.org/author/37568476300
https://ieeexplore.ieee.org/author/37322955000
https://ieeexplore.ieee.org/author/37086170205
https://ieeexplore.ieee.org/author/37086170205
https://ieeexplore.ieee.org/xpl/conhome/8790403/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8790403/proceeding
https://ieeexplore.ieee.org/author/37085707205
https://ieeexplore.ieee.org/author/37545406300
https://ieeexplore.ieee.org/author/38233044600
https://ieeexplore.ieee.org/author/37325963000
https://ieeexplore.ieee.org/author/37325963000
https://ieeexplore.ieee.org/author/37086015776
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/author/37085707205
https://ieeexplore.ieee.org/author/37545406300
https://ieeexplore.ieee.org/author/37325963000
https://ieeexplore.ieee.org/author/37602369000
https://ieeexplore.ieee.org/author/37602369000
https://ieeexplore.ieee.org/author/37303951500
https://ieeexplore.ieee.org/xpl/conhome/7551592/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7551592/proceeding
https://www.sciencedirect.com/journal/applied-soft-computing
https://www.sciencedirect.com/journal/applied-soft-computing/vol/33/suppl/C
https://www.sciencedirect.com/journal/applied-soft-computing/vol/33/suppl/C
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/2745802
https://dl.acm.org/doi/proceedings/10.1145/2745802
https://arxiv.org/search/cs?searchtype=author&query=Cho%2C+K
https://arxiv.org/search/cs?searchtype=author&query=van+Merrienboer%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Gulcehre%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Bahdanau%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Bahdanau%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Bougares%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Schwenk%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Bengio%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Chawla%2C+N+V
https://arxiv.org/search/cs?searchtype=author&query=Bowyer%2C+K+W
https://arxiv.org/search/cs?searchtype=author&query=Hall%2C+L+O
https://arxiv.org/search/cs?searchtype=author&query=Kegelmeyer%2C+W+P
https://ieeexplore.ieee.org/author/38557973700
https://ieeexplore.ieee.org/author/37678683200
https://ieeexplore.ieee.org/author/37064069100
https://ieeexplore.ieee.org/author/38557040000
https://ieeexplore.ieee.org/xpl/conhome/5287478/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5287478/proceeding
https://www.sciencedirect.com/journal/expert-systems-with-applications
https://www.sciencedirect.com/journal/expert-systems-with-applications/vol/36/issue/4
https://www.sciencedirect.com/journal/expert-systems-with-applications/vol/36/issue/4
https://link.springer.com/chapter/10.1007/978-3-662-05409-3_6#auth-Alessandro-Birolini
https://link.springer.com/book/10.1007/978-3-662-05409-3

