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Abstract– Software failure prediction and proneness have 

long been considered critical challenges for the IT 

industry and software professionals. Conventional 

approaches may detect software defects inside an 

application, but they need previous knowledge of 

problems or faulty components. Automated software 

fault recovery models enable the programme to 

significantly predict and recover from software issues via 

the use of machine learning techniques. This feature 

reduces mistakes, time, and money while also making the 

programme run more smoothly. A software defect 

prediction development model was given using machine 

learning techniques, which could enable the programme 

to carry out its intended purpose. A range of optimisation 

evaluation benchmarks, including as accuracy, f1-

measure, precision, recall, and specificity, were also used 

to evaluate the model's performance. The FPRNN-HTF 

(Forward Pass RNN with Hyperbolic Tangent Function) 

deep learning prediction model is based on convolutional 

neural networks and its hyperbolic tangent functions. 

The evaluation process showed how well CNN algorithms 

were used and how accurate they were. Additionally, a 

comparative metric is used to assess the proposed 

prediction model in comparison to other approaches. The 

collected data showed how well the FPRNN-HTF 

approach performed. 

Keywords– FPRNN-HTF (Forward Pass RNN with 

Hyperbolic Tangent Function), precision, recall, 

specificity, F1-measure, and accuracy. 

 

I. INTRODUCTION 

Software defects have a substantial effect on the reliability, 

quality, and maintenance costs of the programme. Since most 

software flaws are hidden, it might be challenging to get bug-

free software even with rigorous application. Developing a 

software bug prediction model that might detect problematic 

modules early on is also a major difficulty in software 

engineering. One of the most important tasks in software 

development is software bug prediction. This is so that by 

foreseeing the issue modules before software is implemented, 

user satisfaction and overall programme performance may be 

raised. Furthermore, early software issue prediction 

maximises resource efficiency and improves software 

flexibility to a variety of scenarios. 

A lot of research has been done on using machine learning 

techniques to forecast software defects. Consider the linear 

Auto-Regression (AR) method for predicting the faulty 

modules. The study predicts future software problems based 

on historical data on cumulative vulnerabilities in software. 

The study also evaluated and contrasted the AR model with 

the Known Power Model (POWM) using the Root Mean 

Square Error (RMSE) approach. The study also included 

three datasets for evaluation, and the results were promising. 

The study looked at how well a number of machine learning 

methods worked for predicting defects. The most current 

advancements in machine learning-based software bug 

prediction as well as the important prior research on each 

machine learning technique. 

II. BACKGROUND 

According to Görkem Giray et al. [1], robotic programming 

deformity expectation (SDP) strategies are used 

progressively, sometimes in conjunction with artificial 

intelligence (AI) methods. However, current machine 

learning techniques need highlights to be physically 

removed, which is laborious, time-consuming, and only 

captures a portion of the semantic information shown in 

defect describing equipment. Thanks to deep learning (DL) 

methodologies, professionals have the priceless possibility to 

extract and profit from more complicated and multi-layered 

information.  

Iqra Batool et al. [2] state that programming engineers may 

leverage programming issue/deformity expectation to find 

problematic builds—like modules or classes—early in the 

product advancement life cycle. Techniques like deep 

learning, artificial intelligence, and information mining are 

used to unfulfilled programme expectations.  

Haowen Chen et al. [3] established the term "heterogeneous 

deformity expectation" (HDP), which describes the 

imperfection prediction amongst projects with varying data. 

Most existing HDP techniques put source and target data into 

a traditional measurement space where each piece has no true 

meaning, significantly limiting their interpretability. In 

addition, class inequality is a difficulty that HDP often 

tackles. 

Phishing assaults, according to Cagatay Catal et al. [4], try to 

obtain personal information by using advanced methods, 

instruments, and strategies. Mobile applications, social 

engineering, internet forums, and joyful infusion are a few 

instances of these. Deep learning computations has out to be 

one of the most successful phishing location strategies, which 

were created to stop and reduce the dangers of these assaults.  
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Xieling in addition to others [5], Recent years have seen the 

emergence of many open-source and endeavor-supported 

information diagrams, signalling a notable progress in the 

integration of information depiction and thinking across 

several fields, such as computer vision and natural language 

processing. With an emphasis on the topical examination 

structure, this study aims to comprehensively analyse the 

condition and trends of information diagrams today.  

In Cagatay et al. (2006), novel methods are proposed for 

recognizing and removing the different kinds of malware, 

where deep learning computations are essential. Although a 

lot of effort has been paid to the development of DL-based 

portable malware detection approaches, it hasn't been 

completely investigated yet. Finding, gathering, and 

analyzing published works on the use of deep learning 

methods to portable malware detection is the aim of this 

endeavour.  

Reality expectation is one of the main obstacles to 

programming language development and progress in order to 

further improve programming quality and dependability 

(Akimova et al., Deform et al., 2007). Finding the 

contaminated source code exactly and properly is the issue in 

this field. Creating a prediction model with flaws is a difficult 

task for which several solutions have been proposed 

throughout time. 

III. PROBLEM IDENTIFICATION 

Analytical approaches are often used in development 

processes for source code verification and examination. This 

process may be carried either manually or automatically 

using a variety of tools, including those for static and 

dynamic code analysis. Recent years have witnessed a boom 

in the creation of tools for static code analysis, which 

provides very practical, high-value answers to a wide range 

of problems faced by software development organizations. 

However, since there are a lot of false positive and false 

negative results, these strategies are challenging to use in 

practical situations. Therefore, a different method or strategy 

for static code analysis has to be found, such as Machine 

Learning (ML) methods.  

The following is a list of the issues that prior research has 

revealed: 

• Relevant software defects are not always easy to find. 

• The recovery of a software problem is not fully understood. 

• It may discover the unidentified software issue due to its 

low accuracy. 

IV. RESEARCH OBJECTIVES 

The planned work's goals are as follows: 

 

• To improve the precision of faultless software bug recovery.  

• To improve recollection for software bugs that affect the 

retrieval process in every way. 

• To improve software bug detection accuracy. 

V. METHODOLOGY 

The Algorithm of proposed methodology FPRNN-HTF 

(Forward Pass RNN with Hyperbolic Tangent Function) is as 

follows 

I = Number of input layers 

H = Number of hidden layers 

O = Number of output layers 

S = Number of data set instances 

Step 1: for i = 1 to H 

Step 2: for j = 1 to S 

calculating the forward for the forward hidden layers with 

activation function 

( )1tanhf f f f f

t h t x t hh W h W x b−= + +  

end for 

Step 3: for j=S to 1 

calculating the backward pass for the backward hidden 

layer’s activation function  

( )1tanhb b b b b

t h t x t hh W h W x b−= + +  

end for 

end for 

Step 4: for i =1 to O 

calculating the forward pass for the output layer using the 

previous stored activation function  

 ( ) ( )f f b b

t i y t y t yi t
P y x W h W h b


= + +  

Wy is the weight matrix connecting the hidden layer to output 

layer,  

Wh is the weight matrix that connects hidden to hidden layer,  

and Wx is the weight matrix that connects input layer to 

hidden layer.  
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by is the output layer bias vectors, and bh is the hidden layer 

bias vectors.  

For the final nonlinearity r, and use tanh as an activation 

function for classification. According to this form, the RNN 

will evaluate the output yt according to the information 

propagated through the hidden layer regardless of whether it 

depends directly or indirectly on the values 

   1 21
, ,....,

t

i ti
x x x x

=
= . 

end for 

end for 

The Architecture of proposed methodology FPRNN-HTF 

(Forward Pass RNN with Hyperbolic Tangent Function) is as 

follows 

 

Fig.1- Process of proposed work 

VI. RESULTS AND ANALYSIS 

The following metrics are collected using a Jupyter notebook 

with Python 3.11.1 running on Anaconda Navigator. CS1.csv 

data from the PROMISE dataset is used to calculate 

precision, recall, F1-Score, and accuracy using the suggested 

FPRNN-HTF algorithm. 

 

Fig.2- Complexity Evaluation of Bug Frequency for FPRNN-HTF 

(Proposed Prediction Model) 

 

Fig.3- Calculation of confusion matrix, precision, recall, F1-Score 

and accuracy among different models and FPRNN-HTF (Proposed 

Prediction Model) 

Table 1: Estimation of Precision, Recall, F1-Score and 

Accuracy among different models and FPRNN-HTF 

(Proposed Prediction Model) 

Models Precision Recall F1-

Score 

Accuracy 

Random 

Forest 

0.9 0.83 0.9 80.65 % 

Naïve 

Bayes 

0.94 0.82 0.88 80.10 % 

Logistic 

Regression 

0.93 0.8 0.88 79.5 % 

Decision 

Tree 

0.83 0.84 0.83 74.86 % 

ANN 0.92 0.84 0.9 82.77 % 

FPRNN-

HTF 

(Proposed) 

0.95 0.96 0.98 96 % 

 

Fig.4- Graphical Analysis of Precision among different models 

and FPRNN-HTF (Proposed Prediction Model) 

In the context of bug prediction, the accompanying image 

illustrates that the suggested model delivers more accuracy 

when compared to other models. FPRNN-HTF outperforms 

Naive Bayes by a margin of 0.01 in terms of accuracy. 
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Fig.5- Graphical Analysis of Recall among different models and 

FPRNN-HTF (Proposed Prediction Model) 

The suggested model performs better than previous models 

in terms of recall for bug prediction, as shown in the graph 

above. Recall for FPRNN-HTF is 0.12 times higher than that 

of Decision Tree and ANN prediction models. 

 

Fig.6- Graphical Analysis of F1-Score among different models and 

FPRNN-HTF (Proposed Prediction Model) 

The suggested model's higher F1-score compared to previous 

models is seen in the following graph. FPRNN-HTF 

outperforms Random Forest and ANN by 0.08 points in 

terms of F1-score. 

 

Fig.7- Graphical Analysis of Accuracy among different models 

and FPRNN-HTF (Proposed Prediction Model) 

The following data demonstrates that the suggested model 

provides a higher level of prediction accuracy for defects 

when compared to the existing models. Compared to the 

ANN prediction model, the FPRNN-HTF prediction model 

has a 13.23% higher accuracy. 

 

VII. CONCLUSION 

To get the desired results in this experiment, we used the 

FPRNN-HTF model. Our investigation shows that feature 

selection and cross validation were not given enough 

consideration in previous efforts. On big datasets, the 

suggested method performs better than others in terms of 

accuracy (98.16%). Since it is computationally intensive (it 

prevents overfitting and provides quick prediction speeds) 

and adaptable in application (it can be used for both 

regression and classification issues), the combination of the 

five proposed algorithms produces the best results. It has 

been an ongoing project to look at this technique further for 

bug prediction in deep learning models. 

These should lead to certain conclusions: 

1. The suggested model has a greater accuracy than FPRNN-

HTF. If we compare this accuracy to Naïve Bayes, it has risen 

by 0.01.  

2. Recall is greater with the suggested model than with 

FPRNN-HTF Regression. Recall for FPRNN-HTF is 0.12 

times higher than that of Decision Tree and ANN prediction 

models. 

3. The proposed model outperforms the FPRNN-HTF in 

terms of F1-Score. There is a 0.08 difference between 

Random Forest and ANN. 

4. The accuracy of the suggested model is higher than that of 

ANN. A 13.23% improvement in accuracy has been seen. 

Therefore, FPRNN-HTF (Forward Pass RNN with 

Hyperbolic Tangent Function) is a more accurate approach 

for software bug prediction.   

We suggest a method that improves diagnosis accuracy, 

which is essential for a successful course of therapy. Future 

accuracy assessments should make use of fresh datasets, and 

further AI techniques have to be used to verify the estimate's 

accuracy. The recommended model has a processing time 

constraint since the train data performance estimate requires 

a huge quantity of data. In the future, the same algorithms 

and real-time data will be used to measure the system's 

efficacy. 
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