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Abstract — The evolution of medical imaging technology has 

sparked revolutionary progress in neuroimaging, 

particularly in the domain of brain tumor diagnostics. This 

survey paper navigates through cutting-edge methodologies 

in brain tumor classification, centering on the transformative 

impact of deep convolutional neural networks (CNNs). The 

integration of deep learning techniques, specifically CNNs, 

has reshaped the land- scape of brain tumor classification by 

automating the extraction of intricate features from medical 

imaging data, notably magnetic resonance imaging (MRI) 

scans. The review critically evaluates key studies that 

leverage CNN architectures for brain tumor classification, 

emphasizing diverse datasets, model architectures, and 

evaluation metrics. Furthermore, the review explores the 

integration of CNNs with traditional architectures, 

underscoring the innovative approaches to enhance 

classification accuracy. As a synthesis of contemporary 

research, this survey paper aims to furnish a comprehensive 

understanding of the current landscape of brain tumor 

classification using deep convolutional neural networks. By 

critically assessing methodologies, achievements, and 

challenges, it endeavors to guide future research directions, 

aspiring to refine diagnostic accuracy, optimize model 

performance, and ultimately advance personalized treatment 

strategies for individuals grappling with brain tumours. 
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I. INTRODUCTION 

The advent of advanced medical imaging technologies has 

paved the way for revolutionary developments in the field 

of diagnostic medicine, particularly in the domain of 

neurology. Among the myriad neurological disorders, 

brain tumors rep- resent a significant health challenge, 

demanding precise and swift diagnostic approaches for 

effective treatment. In recent years, there has been a 

paradigm shift in the utilization of deep learning 

techniques, specifically deep convolutional neural 

networks (CNNs), to enhance the accuracy and efficiency 

of brain tumor classification.[1] This novel approach 

capitalizes on the capacity of CNNs to automatically learn 

intricate hierarchical features from medical imaging data, 

thereby providing a powerful tool for automated tumor 

classification. 

The classification of brain tumors using deep CNNs 

involves the extraction of complex patterns and features 

from medical images such as magnetic resonance imaging 

(MRI) scans. These neural networks, inspired by the 

human visual system, can discern subtle differences in 

tumor characteristics, aiding in the differentiation of 

various tumor types and grades.[2] 

 
Fig.1- MR images of brain tumors. (a) Glioma tumor (b) Pituitary 

tumor (c) No tumor (d) Meningioma tumor 

This sophisticated approach holds promise for not only 

expediting the diagnostic process but also improving the 

overall accuracy of tumor classification, thus facilitating 

personalized treatment strategies. Several studies have 

demonstrated the effectiveness of deep CNNs in brain 

tumor classification. For instance, the work by [3] 

showcased the potential of deep learning models in 

automatically classifying brain tumors with high accuracy, 

even outperforming traditional machine learning methods. 

Additionally, the research conducted by [4] emphasized 

the significance of deep CNNs in not only identifying 

tumor presence but also providing valuable insights into 

tumor subtypes, aiding clinicians in tailoring treatment 

plans for optimal patient outcomes. 

As the integration of deep CNNs in medical imaging gains 

momentum, it is crucial to explore the challenges and 

opportunities associated with this innovative approach. 

This introduction sets the stage for a comprehensive 

exploration of brain tumor classification using deep 

convolutional neural networks, delving into the technical 

intricacies, clinical implications, and the future prospects 

of this transformative methodology. Through an in-depth 

analysis of existing literature and emerging research 

trends, this study aims to contribute to the growing body 

of knowledge that seeks to harness the potential of 

artificial intelligence in improving neurological 

diagnostics and patient care. 

The remaining part of the paper is organized as follows; 

Section 2 illustrates related works to this survey work. In 
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Section 3, the commonly used neural network models and 

in section 4, their performance metrics in evaluating the 

performance of brain tumor classification methodologies 

is highlighted. In Section 5, Finally, the paper presents a 

discussion on different models and a conclusion in 

Section 6. 

II. LITERATURE SURVEY 

In this section, we review pertinent research on the 

detection of brain tumors utilizing machine learning (ML) 

models. In [5], a deep educational model leveraging an 

MRI dataset for brain tumor detection. Their study 

incorporated four additional transfer learning models—

VGG16, MobileNet, ResNet-50, and Inception V3. The 

dataset, comprising 10,000 MR images with a resolution 

of 200 × 200 pixels, was categorized into brain tumors 

and non-brain tumors, each containing 5000 images. 

Notably, their deep educational model outperformed 

others, achieving a training accuracy of 100% and a test 

accuracy of 98%. 

In [6] introduced a deep convolutional neural network 

(DCNN) model for brain tumor detection using an MRI 

dataset. Their proposed model, characterized by a 

lightweight architecture with minimal convolutions, max-

pooling, and iterations, was compared with VGG16, 

VGG19, and CNN- SVM. Analyzing 3394 MR images 

across four subcategories—Glioma (934), Meningioma 

(945), No Tumor (606), and Pituitary (909)—their model 

demonstrated an impressive overall accuracy of 97.72%. 

Additionally, it achieved a detection rate of 99% for 

Glioma, 98.26% for Meningioma, 95.95% for Pituitary, 

and 97.14% for normal images. 

In [7], pioneered a cutting-edge Correlation Learning 

Method (CLM) that integrates a convolutional neural 

network (CNN) with a conventional architecture for brain 

tumor classification. Investigating 3064 brain cancer 

images, including Meningioma (708 images), Glioma 

(1426 images), and Pituitary (930 images), their CLM 

model exhibited an accuracy of approximately 96%, 

precision of about 95%, and a recall of around 95%. 

In [8], proposed a comprehensive approach for detecting 

brain tumors, involving naive Bayes, random forest, 

neural network, KNN, and decision tree machine learning 

models. Additionally, they introduced a hybrid ensemble 

classifier (KNN-RF-DT). The evaluation of these machine 

learning models, conducted on a dataset comprising 2556 

images, highlighted their efficacy in brain tumor detection. 

The study focused on brain tumor detection using 

machine learning models, employing an 85%-15% split 

for training and testing, respectively. Feature extraction 

through Stationary Wavelet Transform (SWT), Principal 

Component Analysis (PCA), and Gray Level Co-

occurrence Matrix (GLCM) yielded thirteen distinctive 

features for classification. The proposed approach 

demonstrated robust performance with an accuracy of 

97.305%, precision of 97.73%, specificity of 97.60%, 

sensitivity of 97.04%, and reliability of 97.41%. 

In [9], introduced dense EfficientNet, a CNN-based net- 

work, for brain tumor image detection using MRI. 

Comparative analysis with ResNet-50, MobileNet, and 

MobileNetV2 favored the dense EfficientNet, achieving a 

remarkable 98.78% 

accuracy and a 98.0% F1-score after training on a dataset 

of 3260 MR images featuring four types of MRI. 

In [10], proposed a CNN-based residual network for early 

brain tumor detection, utilizing the BRATS 2015 MRI 

dataset. The model achieved an accuracy of 97.05%, 

along with other notable metrics, including a mean 

accuracy of 97.05%, global accuracy of 94.43%, mean 

IoU of 54.21%, weighted IoU of 93.64%, and mean BF 

score of 57.027%, after one-hundred epochs of training. 

In [11], presented a modified two-step dragonfly 

algorithm for brain tumor segmentation in 3D MR images, 

demonstrating enhanced accuracy (98.20%), recall 

(95.13%), and precision (93.21%) compared to other 

models. Notably, limitations included a focus on the entire 

tumor segment without considering multiple tumors per 

slice. 

In [12], proposed a hybrid CNN model for brain tumor 

detection using BRATS MR images, integrating a two-

phase training method and regularization approaches. The 

model exhibited promising performance, with a Dice 

score of 86%, sensitivity of 86%, and specificity of 91%. 

In [13], introduced a KNN classifier for early detection of 

fetal brain abnormalities, achieving an accuracy of 95.6% 

and an AUC of 99%. Attallah et al. [41] proposed a deep- 

learning-based machine learning architecture for the early 

diagnosis of embryonic neurodevelopmental 

abnormalities, showing promising results. 

In [14], explored a physiological MRI approach combined 

with nine machine learning models for early brain tumor 

detection, considering various performance indicators. 

Aamir et al. [43] proposed an automated method for brain 

tumor detection, achieving a superior 98.95% accuracy 

compared to existing approaches. 

In their research, the authors collected diverse brain tumor 

MR images and assessed their CNN model against various 

machine learning models, outperforming transfer learning 

models. Despite challenges like low GPU resources 

initially, the study utilized a substantial dataset of 3264 

MRI scans, addressing limitations and optimizing system 

performance for future research. 

III. NEURAL NETWORK MODELS 

A. VGG16 

In [15], pioneered the VGG16 deep convolutional neural 

network (DCNN) model, achieving notable success by 

securing a top 5 test accuracy of 92.7% in the ImageNet 

competition organized by the Oxford Visual Geometry 

Group. Transfer learning efficiency assessments revealed 

that a pre-trained and fine-tuned VGG16 model 

outperformed a fully trained network. The substantial 

depth of the VGG model proved advantageous, 

facilitating the learning of more intricate and complex 

features by the kernels. 



International Journal on Advances in Engineering Technology and Science 

Volume: 5, Issue: 2, 2024, e-ISSN: 2455-3131 

DOI: 10.5281/zenodo.12593345 

 

© 2016-2024, IJAETS  159 

B. VGG19 

The VGG19 model, an extension of the original VGG 

architecture, incorporates a total of 19 layers. This model 

concludes with three fully connected (FC) layers, 

summing up to a total of 19 layers. These FC layers 

consist of 4096, 4096, and 1000 neurons, respectively. 

Additionally, the model includes five Maxpool layers and 

a Softmax layer. Notably, layers with convolutional 

characteristics incorporate the Rectified Linear Unit 

(ReLU) activation feature [16]. 

 
 

Fig.2- VGG16 Model Architecture 

 

 

Fig.3- VGG19 Model Architecture 

 

 
Fig.4- DenseNet 121 Model Architecture 

C. DenseNet 121 

The convolutional neural network architecture of 

DenseNet121 emphasizes dense connections between 

layers. Developed by researchers at Facebook AI 

Research, DenseNet121 is a 121-layer neural network that 

incorporates convolutional, pooling, and fully connected 

layers. In contrast to traditional CNN designs, 

DenseNet121 establishes dense connections between 

every layer in a feed-forward manner, facilitating a direct 

flow of both data and gradients across the network. This 

dense connectivity enhances gradient-based optimization, 

elevates model performance through enhanced feature 

reuse, reduces the number of parameters, and improves 

overall gradient flow. Renowned for its outstanding 

performance in tasks such as picture categorization and 

object identification, DenseNet121 stands as a preferred 

choice in numerous computer vision applications [17]. 

D. ResNet50 

ResNet50, a profound convolutional neural network 

architecture, has emerged as a breakthrough in computer 

vision. Comprising 50 layers and introducing residual 

blocks, ResNet50 effectively addresses challenges 

associated with training highly deep neural networks. 

Renowned for its exceptional performance, ResNet50 

excels in diverse tasks such as image segmentation, object 

identification, and classification. 

 
Fig.5- ResNet50 Model Architecture 

The inclusion of skip connections in ResNet50 enhances 

gradient flow, preventing a decline in network 

performance as depth increases. This mechanism enables 

information to flow directly from early levels to 

subsequent layers. ResNet50 has become a favored choice 

in cutting-edge deep learning applications due to its potent 

feature extraction capabilities [18]. 

E. YOLO V4 

YOLOv4, an advanced object identification algorithm, is 

renowned for its remarkable precision and speed. 

Standing for “You Only Look Once,” it is widely 

employed in numerous computer vision tasks. YOLOv4 

boasts sophisticated features, including a CSPDarknet53 

backbone and diverse scale predictions, enabling it to 

effectively identify objects of varying sizes and scales. 

Implementing the Mish activation function and 

incorporating optimizations like spatial pyramid pooling 

(SPP) and panoptic feature pyramid networks (PFPN), 

YOLOv4 has garnered a stellar reputation for its reliable 

real-time object detection performance [19]. 

F. Inception V3 

The Inception v3 model stands as a prominent deep 

learning network primarily utilized for image 

categorization and detection [20-23]. Notably, training 

Inception V3 poses challenges on systems with limited 

computational capabilities, often necessitating several 

days for model training [24-26]. An improvement over 

Inception V1 released by GoogLeNet in 2014, Inception 

V3 was introduced in 2015 with 42 layers and 

demonstrated minimal error rates compared to its 

predecessors. The Inception process encompasses steps 

such as convolution, pooling, dropout, fully connected, 



Vandana Patel et. al., A Comprehensive Survey on Deep Convolutional Neural Networks for Brain Tumor 

Detection 

160  https://ijaets.in 

and softmax [27-28]. Figure 7 provides a visual 

representation of the Inception V3 architecture [29]. 

 

Fig.6- YOLO V4 Model Architecture 

 
Fig.7- Architecture of Inception V3 

 

IV. METHODOLOGY 

A. Architecture 

In our investigation, an initial convolutional layer 

processed an input image of dimensions 32 × 32 pixels 

using 16 filters, resulting in a 32 × 32 × 16 feature map 

and a 3 × 3 kernel size, aimed at identifying fundamental 

features. Subsequently, the output from this convolutional 

layer underwent max- pooling, generating a 15 × 15 × 16 

feature map to reduce spatial data dimensions by half for 

the subsequent layer. The subsequent process involved 

another convolutional layer with 32 filters, producing a 13 

× 13 × 32 feature map with a 3 × 3 kernel size, followed 

by a max-pooling layer resulting in a 6 × 6 × 32 feature 

map. This sequence continued with additional 

convolutional and pooling layers, culminating in a final 

convolutional layer generating a 4 × 4 × 64 feature map. 

The final pooling layer produced a 2 × 2 × 64 feature map. 

The flattened output of the last convolutional layer was 

fed into a fully connected dense layer with 4160 

dimensions, which, in turn, connected to the ultimate 

output layer featuring a softmax activation function. 

While the final layer utilized softmax activation without 

dropout, all preceding layers employed a 0.5 dropout and 

ReLU activation function. Figure 2 illustrates the CNN 

architecture configuration proposed above. Model training 

involved 80 epochs, a batch size of 18, and a learning rate 

of 0.01, utilizing the Adam optimizer and a categorical 

cross-entropy-based loss function to calculate loss values. 

The methodology comprised several key stages. Initially, 

data collection occurred from an online repository 

(kaggle.com, accessed on 10 November 2022), followed 

by dataset pre-processing. The validation stage employed 

a holdout validation system, and various machine learning 

models were applied to train the images. Dataset 

partitioning allocated 80% for training, 10% for testing, 

and 10% for validation. The study focused on validating 

four brain image types: glioma tumors, meningioma 

tumors, no tumor, and pituitary tumors. To corroborate the 

findings, multiple metrics such as accuracy, recall, AUC, 

and loss were considered. Figure 3 provides a 

comprehensive step-by-step breakdown of the research 

methodology. 

B. Environment Setup 

Our experimental setup utilized the Google Colab Pro+ 

plat- form, which is entirely cloud-based. Developed with 

NVIDIA Tesla K80, T4, and P100 GPUs, this platform 

also featured a substantial 52 GB high-RAM runtime. 

Leveraging this highly customized environment, the 

training of machine learning models was not only 

expedited but also significantly more efficient compared 

to conventional setups. 

C. Dataset Collection 

Our dataset, aimed at detecting brain tumors, was sourced 

from publicly available data on kaggle.com. The dataset 

was curated using images obtained from magnetic 

resonance imaging (MRI), selected for their efficacy in 

brain tumor detection. Meningioma (937 photos), no 

tumor (500 images), pituitary tumor (900 images), and 

glioma tumor (926 images) constituted the four distinct 

types of brain tumor data considered in our study. The 

dataset comprised a total of 3264 MRI images. 

D. Pre-Processing of the Dataset 

Pre-processing stands as a crucial phase in rendering data 

suitable for training purposes. Given that the MR images 

were sourced from a patient database and exhibited unclear 

and low- quality attributes, normalization was a key step to 

ready the images for subsequent processing. To enhance 

image clarity and eliminate blurriness, Gaussian and 

Laplacian filters were applied during this stage. This 

preparatory phase aimed to optimize the quality of the 

images for subsequent analysis. 

E. Data Division and Augmentation 

Despite its limited size comprising solely MR images, our 

dataset posed a challenge as deep neural networks 

typically thrive on expansive datasets for optimal 

outcomes. The dataset consisted of 3264 MR images, 

where 80% of the data facilitated training, while the 

remaining images were allocated for testing and validation 

at rates of 10% each. Recognizing the potential of data 

augmentation to bolster the original dataset and refine 

training, we implemented techniques such as mirroring, 

rotation, width and height shifting, and zooming. These 

augmentation strategies not only expanded the dataset but 

also heightened the model’s learning capacity. 

Subsequently, the datasets underwent validation using the 

holdout validation method. 

F. Validation Process 

Selecting an optimal validation procedure was imperative 

for the dataset comprising 3264 scan images. Employing 

the widely adopted holdout validation process, we 

allocated 80% of the data for training purposes and 

reserved the remaining 20% for testing [30]. This 
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technique, recognized for its effectiveness, involves the 

division of the dataset into two parts: a training set and a 

testing set, expediting the model training process. The 

training set played a pivotal role in deep learning model 

training, while the testing set served to assess the model’s 

performance. Within the holdout method, 80% of the 

dataset underwent random selection for training, leaving 

the remaining 20% for testing. This approach facilitated 

robust model training, leveraging a substantial amount of 

data for enhanced generalization to new, unseen data. 

However, it is essential to acknowledge that the testing set 

might not be entirely representative of the overall data, 

potentially introducing bias to the performance estimate. 

G. Performance Metrics 

In assessing the machine learning models and scrutinizing 

their performances, we took into account key metrics 

including accuracy, recall, and the area under the curve 

(AUC). 

Accuracy: Accuracy is calculated by dividing the number 

of correct predictions by the total number of samples, and 

this can be computed using Equation (1)  

Accuracy = 
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  100 %  (1) 

where: TP = True positive; TN = True negative; FN = 

False negative; FP = False positive. 

Recall: Recall is one of the another most important 

metrics to evaluate machine learning model. The recall 

can be calculated as: 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (2) 

Area under the Curve: AUC stands for the area under the 

curve. The AUC evaluates how effectively the model 

distinguishes between both positive and negative 

categories. Higher AUC values indicate a better 

performance of the model. 

TABLE I 
NEURAL NETWORK MODEL’S PERFORMANCE ON BRAIN TUMOR DETECTION 

 
Models Accuracy (%) AUC (%) Recall (%) Loss 
CNN 93.30 98.43 91.13 0.25 
ResNet-50 81.10 94.20 81.04 0.85 

VGG16 71.60 89.60 70.03 1.18 

Inception V3 80.00 89.14 79.81 3.67 

 

V. RESULTS AND   DISCUSSION 

An analysis of the performance of various deep learning 

models—namely, VGG16, CNN, ResNet-50, and 

Inception V3 classification algorithms—on the brain 

tumor MR image dataset, with visual comparisons shown 

in Figure 8. The table showcases model performance 

metrics, including accuracy, area under the curve (AUC), 

recall, and loss function results. Upon careful examination 

of the CNN, VGG16, ResNet-50, and Inception V3 

methods, it became evident that the CNN outperformed 

other deep learning models, as indicated in Table-1. The 

CNN achieved an impressive validation accuracy of 

93.3%, a validation AUC of 98.43%, a validation recall of 

91.1%, and a validation loss of 0.260. 

To further illustrate the validation accuracy, 

corresponding training accuracy graphs for CNN, ResNet-

50, Inception V3, and VGG16 are presented. The blue 

lines represent training accuracy, while the orange lines 

represent validation accuracy. Notably, the CNN 

exhibited the highest validation accuracy at 93.30%, 

coupled with a training accuracy value of 90.50%. In 

comparison, ResNet-50 achieved a validation accuracy of 

81.10%, with the highest training accuracy value of 

98.43%. Inception V3 achieved a validation accuracy of 

80% and a training accuracy of 91.79%. However, 

VGG16 exhibited the lowest validation accuracy at 71.60% 

and the lowest training accuracy at 79.20%. 

During model implementation, 80 epochs and a batch size 

of 18 were selected, and the Adam optimizer was 

employed. The accuracy graph analysis emphasized the 

superiority of the CNN, demonstrating a significant output 

curve in validation accuracy concerning training accuracy, 

without encountering over-fitting or under-fitting issues. 

VI.  CONCLUSION 

The early detection of brain tumors plays a crucial role in 

mitigating higher mortality rates on a global scale. The 

intricacies of tumor form, dynamic size changes, and 

structural variations make accurate detection challenging. 

The classification of MR images significantly influences 

clinical diagnosis and therapy decisions for brain tumor 

patients. While early identification of brain tumors using 

MR images and segmentation methods holds promise, 

achieving precise recognition and categorization of tumor 

locations remains a formidable task. 

In our study on early brain tumor detection, diverse MRI 

brain tumor images were utilized. Deep learning models, 

particularly CNN, have proven instrumental in 

classification and detection. Our proposed CNN model 

demonstrated promising results, leveraging a substantial 

volume of MR images. To ensure the efficiency of the ML 

models, various indicators were employed during the 

evaluation process. Additionally, we considered 

alternative ML models to comprehensively assess our 

outcomes. Acknowledging the limitations of our research, 

the training process for the CNN was time-consuming due 

to numerous layers and inadequate GPU capacity. 

Subsequent improvements to our GPU system resulted in 

reduced training times. Future work could enhance brain 

cancer identification by incorporating individual patient 

information from diverse sources. 
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